• Title/Summary/Keyword: speed-up effect

Search Result 596, Processing Time 0.027 seconds

Design of Membership Ranges for Robust Control of Variable Speed Drive Refrigeration Cycle Based on Fuzzy Logic (가변속 냉동사이클의 강인제어를 위한 퍼지로직의 멤버십함수 범위 설계)

  • Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • This paper focuses on systematic design about the membership ranges of the main design factors such as control error, control error rate, and sampling time for the fuzzy logic control of the variable speed drive refrigeration cycle. The upper and the lowest limit of the membership ranges are set up from the data of static characteristics obtained by experiments. Three kinds of membership ranges on the control error and the control error rate are tested by experiments. Especially, an effect of sampling time on control performance is also investigated in the same way. Experimental data showed the control error rate and the sampling time strongly effected on the control performance of the refrigeration cycle with a variable speed drive.

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

Improvement of Machinability for QRO90 High Hardened Core Part by High Speed Machining (고속가공에 의한 고경도재 QRO90 코어부의 가공성 향상)

  • Gang, Myeong-Chang;Kim, Jeong-Seok;Lee, Deuk-U;Im, Yu-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2002
  • This paper presents an experimental investigation of high speed machining of dies and molds. Several critical issues involved with the high speed machining of QRO90 tool steel of hardness up to HRc62, have been studied and explained from a detail analysis of experimental observations. The experiments were performed using ball end mills. The effect of different process parameters on tool life and surface finish produced was also investigated. The cutting parameters involved were; cutting speeds in the range of 100 to 40 / m/min, axial depth of cut from 0.1 to 0.5mm, pick feed of 0.1 to 0.5mm. Run out and acceleration signals were observed during the experiment to investigate cutting slates. Compressed air and flood coolant were used and the effect of coolant on tool life was also determined.

Evaluation of 2+1 Roads Application to Improve Rural Two-lane Highway in Korea (국내 2+1차로 도로 도입에 따른 교통운영 및 경제적 비용 측면의 기대효과 분석)

  • Chae, Chan Dle;Lee, Dong Min;Cho, Han Seon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.85-92
    • /
    • 2013
  • PURPOSES: The purpose of this paper is to estimate expected effects on traffic operational and economic aspects of 2+1 roads application in Korea. METHODS : Micro simulation study using VISSIM 5.0 was used to analyze the operation efficiency of 2+1 roads compared to two-lane highways and four-lane highways. Some scenarios for various traffic volumes were set up in order to analyze the effect of 2+1 roads under various traffic situations. Also imaginary road networks were set up for each type of roads. The MOEs to measure the operation efficiency were selected with average travel speed and delay. For analyzing economic effect of 2+1 roads, construction cost of a specific imaginary 2+1 road was compared to construction cost of a four-lane highway with same conditions. RESULTS: The results of study show that a 2+1 road is more effective with 19 percents higher average travel speed and 39 percents lower average delay than a two-lane highway. In the economic analysis, construction costs to construct a 2+1 road are saved as approximately 26.4~40.7 percents when compared to construction of four-lane highway. CONCLUSIONS: It can be concluded that 2+1 roads can improve the traffic operational level of service for two-lane highways and 2+1 roads can be applied as an effective design alternative for higher-volume two-lane highways in Korea.

I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver (가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘)

  • 송윤정;나성웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1104-1111
    • /
    • 2003
  • The paper presents an algorithm for the compensation of gain and phase imbalances to exist between I-phase and Q-phase signal at direct conversion receiver. We propose a gain and phase imbalances blind equalization compensation algorithm by using variable step-size adaptive loop at direct conversion receiver. The blind equalization schemes have trade-off between convergence speed and jitter effect for the compensation of gain and phase imbalance. We propose the variable step-size adaptive loop method, which varies the loop coefficients according to errors, for recovering these problem. By using variable step-size adaptive loops, we propose to speed up the convergence process and reduce the jitter effect and simulation results show that the algorithm compensates signal loss and speeds up convergence time.

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

Allowable Speed of Tilting Car in the Conventional Line (기존선의 선형조건을 고려한 틸팅차량의 허용속도 평가)

  • 유영화;엄주환;엄기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • A quantitative analysis on the amounts of cant and lateral displacement of gravitational center due to the introduction of high-speed tilting car was carried out, based on the current alignment of the conventional line. In addition, the maximum allowable speed in curve and the level of improvement in maximum speed of tilting car were evaluated through the comparison with the maximum speed of locomotive. It was found that the tilting car produces an equivalent amount of cant, which corresponds to 47.5 % of current actual cant. This effect could be explained by the fact that 1.34 m, which is the height of gravitational center of tilting car from the rail level, is much lower than that of locomotive and thus guarantees much higher level of safety in curve. The equivalent amount of cant due to the lateral displacement of gravitational center followed by tilting in curve was 2.4 mm. It was small but not enough to be neglected and must be included in calculating the maximum speed in curve. It could be concluded that the 15 % speed-up of the conventional line is reasonable under the current condition of alignment.

Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions

  • Ni, Y.Q.;Ko, J.M.;Hua, X.G.;Zhou, H.F.
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.341-356
    • /
    • 2007
  • A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.