• Title/Summary/Keyword: speed of objects

Search Result 500, Processing Time 0.025 seconds

A Robust Algorithm for Tracking Non-rigid Objects Using Deformed Template and Level-Set Theory (템플릿 변형과 Level-Set이론을 이용한 비강성 객체 추적 알고리즘)

  • 김종렬;나현태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.127-136
    • /
    • 2003
  • In this paper, we propose a robust object tracking algorithm based on model and edge, using deformed template and Level-Set theory. The proposed algorithm can track objects in case of background variation, object flexibility and occlusions. First we design a new potential difference energy function(PDEF) composed of two terms including inter-region distance and edge values. This function is utilized to estimate and refine the object shape. The first step is to approximately estimate the shape and location of template object based on the assumption that the object changes its shape according to the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level-Set speed function. The experimental results show that the proposed algorithm can track non-rigid objects under various environments, such as largely flexible objects, objects with large variation in the backgrounds, and occluded objects.

Real-time Detection and Tracking of Moving Objects Based on DSP (DSP 기반의 실시간 이동물체 검출 및 추적)

  • Lee, Uk-Jae;Kim, Yang-Su;Lee, Sang-Rak;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • This paper describes real-time detection and tracking of moving objects for unmanned visual surveillance. Using images obtained from the fixed camera it detects moving objects within the image and tracks them with displaying rectangle boxes enclosing the objects. Tracking method is implemented on an embedded system which consists of TI DSK645.5 kit and the FPGA board connected on the DSP kit. The DSP kit processes image processing algorithms for detection and tracking of moving objects. The FPGA board designed for image acquisition and display reads the image line-by-line and sends the image data to DSP processor, and also sends the processed data to VGA monitor by DMA data transfer. Experimental results show that the tracking of moving objects is working satisfactorily. The tracking speed is 30 frames/sec with 320x240 image resolution.

Hierarchical Object Recognition Algorithm Based on Kalman Filter for Adaptive Cruise Control System Using Scanning Laser

  • Eom, Tae-Dok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.496-500
    • /
    • 1998
  • Not merely running at the designated constant speed as the classical cruise control, the adaptive cruise control (ACC) maintains safe headway distance when the front is blocked by other vehicles. One of the most essential part of ACC System is the range sensor which can measure the position and speed of all objects in front continuously, ignore all irrelevant objects, distinguish vehicles in different lanes and lock on to the closest vehicle in the same lane. In this paper, the hierarchical object recognition algorithm (HORA) is proposed to process raw scanning laser data and acquire valid distance to target vehicle. HORA contains two principal concepts. First, the concept of life quantifies the reliability of range data to filter off the spurious detection and preserve the missing target position. Second, the concept of conformation checks the mobility of each obstacle and tracks the position shift. To estimate and predict the vehicle position Kalman filter is used. Repeatedly updated covariance matrix determines the bound of valid data. The algorithm is emulated on computer and tested on-line with our ACC vehicle.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Query Processing of Uncertainty Position Using Road Networks for Moving Object Databases (이동체 데이타베이스에서 도로 네트워크를 이용한 불확실 위치데이타의 질의처리)

  • Ahn Sung-Woo;An Kyung-Hwan;Bae Tae-Wook;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.283-298
    • /
    • 2006
  • The TPR-tree is the time-parameterized indexing scheme that supports the querying of the current and projected future positions of such moving objects by representing the locations of the objects with their coordinates and velocity vectors. If this index is, however, used in environments that directions and velocities of moving objects, such as vehicles, are very often changed, it increases the communication cost between the server and moving objects because moving objects report their position to the server frequently when the direction and the velocity exceed a threshold value. To preserve the communication cost regularly, there can be used a manner that moving objects report their position to the server periodically. However, the periodical position report also has a problem that lineal time functions of the TPR-tree do not guarantee the accuracy of the object's positions if moving objects change their direction and velocity between position reports. To solve this problem, we propose the query processing scheme and the data structure using road networks for predicting uncertainty positions of moving objects, which is reported to the server periodically. To reduce an uncertainty of the query region, the proposed scheme restricts moving directions of the object to directions of road network's segments. To remove an uncertainty of changing the velocity of objects, it puts a maximum speed of road network segments. Experimental results show that the proposed scheme improves the accuracy for predicting positions of moving objects than other schemes based on the TPR-tree.

The Effect of Retinal and Perceived Motion Trajectory of Visual Motion Stimulus on Estimated Speed of Motion (운동자극의 망막상 운동거리와 지각된 운동거리가 운동속도 추정에 미치는 영향)

  • Park Jong-Jin;Hyng-Chul O. Li;ShinWoo Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.181-196
    • /
    • 2023
  • Size, velocity, and time equivalence are mechanisms that allow us to perceive objects in three-dimensional space consistently, despite errors on the two-dimensional retinal image. These mechanisms work on common cues, suggesting that the perception of motion distance, motion speed, and motion time may share common processing. This can lead to the hypothesis that, despite the spatial nature of visual stimuli distorting temporal perception, the perception of motion speed and the perception of motion duration will tend to oppose each other, as observed for objects moving in the environment. To test this hypothesis, the present study measured perceived speed using Müller-Lyer illusion stimulus to determine the relationship between the time-perception consequences of motion stimuli observed in previous studies and the speed perception measured in the present study. Experiment 1 manipulated the perceived motion trajectory while controlling for the retinal motion trajectory, and Experiment 2 manipulated the retinal motion trajectory while controlling for the perceived motion trajectory. The result is that the speed of the inward stimulus, which is perceived to be shorter, is estimated to be higher than that of the outward stimulus, which is perceived to be longer than the actual distance traveled. Taken together with previous time perception findings, namely that time perception is expanded for outward stimuli and contracted for inward stimuli, this suggests that when the perceived trajectory of a stimulus manipulated by the Müller-Lyer illusion is controlled for, perceived speed decreases with increasing duration and increases with decreasing duration when the perceived distance of the stimulus is constant. This relationship suggests that the relationship between time and speed perceived by spatial cues corresponds to the properties of objects moving in the environment, i.e, an increase in time decreases speed and a decrease in time increases speed when distance remains the same.

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor (구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구)

  • Choi Jae-Hyuk;Jang Hoon;Kim Jong-Sun;Yoo Ji-Yoon;Song Myung-Hyun;Lee Young-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF

An Improved Method of Guaranteeing Frame Rates of Avionics Simulator based on HMD Motion

  • Lee, Jeong-Hoon;Jo, Yong-Il;Kim, Kyong Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.57-62
    • /
    • 2018
  • In this paper, we propose an improved algorithm for rendering method to guarantee frame rates based on HMD (Head Mounted Display) motion in an avionics simulator. One of important issues in HMD simulators is to guarantee frame rates despite fast motion of HMD which is more rapid than the aircraft's moving speed to maintain a quality of images. Therefore, we propose an algorithm considering the moving speed of a pilot's head: Improved Speed-Based LOD (Level-Of-Detail) Control (ISBLC). In the proposed algorithm, frame rates are improved by changing dynamic LOD which determines details of objects for rendering images. Throughout the experiments, we show the average frame rates are achieved up to 60 and minimum frame rates are guaranteed up to 40. The proposed algorithms will be used HMD simulation in avionics simulators.