• Title/Summary/Keyword: speech preprocessing

Search Result 65, Processing Time 0.04 seconds

A Study on a Analysis and Comparison of Preprocessing Technique for the Speech Compression (음성압축을 위한 전처리기법의 비교 분석에 관한 연구)

  • Jang, Kyung-A;Min, So-Yeon;Bae, Myung-Jin
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.125-136
    • /
    • 2003
  • Speech coding techniques have been studied to reduce the complexity and bit rate but also to improve the sound quality. CELP type vocoder, has used as a one of standard, supports the great sound quality even low bit rate. In this paper, the preprocessing of input speech to reduce the bit rate is the different with the conventional vocoder. The different kinds of parameter are used for the preprocessing so this paper is compared with theses parameters for finding the more appropriate parameter for the vocoder. The parameters are used to synthesize the speech not to encode or decode for coding technique so we proposed the simple algorithm not to have the influence on the processing time or the computation time. The parameters in used the preprocessing step are speaking rate, duration and PSOLA technique.

  • PDF

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

An Improved Voice Activity Detection Algorithm Employing Speech Enhancement Preprocessing

  • Lee, Yoon-Chang;Ahn, Sang-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.865-868
    • /
    • 2000
  • In this paper we derive a new VAD algorithm, which combines the preprocessing algorithm and the optimum decision rule. To improve the performance of the VAD algorithm we employ the speech enhancement algorithm and then apply the maximal ratio combining technique in the preprocessing procedure, which leads to maximized output SNR. Moreover, we also perform extensive computer simulations to demonstrate the performance improvement of the proposed algorithm under various background noise environments.

  • PDF

An Improved VAD Algorithm Employing Speech Enhancement Preprocessing and Threshold Updating (음성 향상 전처리와 문턱값 갱신을 적용한 향상된 음성검출 방법)

  • 이윤창;안상식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1161-1168
    • /
    • 2003
  • In this paper, we propose an improved statistical model-based voice activity detection algorithm and threshold update method. We first improve signal-to-noise ratio by using speech enhancement preprocessing algorithm combined power subtraction method and matched filter, then apply it to LLR test optimum decision rule for improving the performance even in low SNR conditions. And we propose an adaptive threshold update method that was not concerned in any papers. We also perform extensive computer simulations to demonstrate the performance improvement of the proposed VAD algorithm employing the proposed speech enhancement preprocessing algorithm and adaptive threshold update method under various background noise environments. Finally we verify our results by comparing ITU-T G.729 Annex B.

A Study of Energy Parameter without Windowing Influence in Speech Signal (윈도우의 영향이 제거된 에너지 파라미터에 관한 연구)

  • 조태수;신동성;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.277-280
    • /
    • 2001
  • The preprocessing is very important course in speech signal processing. It influence the compression-rate in speech coding and the recognition-rate in speech recognition etc. In this paper, we propose that minimizing window-influence method with pitch period and start points. The proposed method is available for voiced detection and word labeling.

  • PDF

Preprocessing method for enhancing digital audio quality in speech communication system (음성통신망에서 디지털 오디오 신호 음질개선을 위한 전처리방법)

  • Song Geun-Bae;Ahn Chul-Yong;Kim Jae-Bum;Park Ho-Chong;Kim Austin
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.200-206
    • /
    • 2006
  • This paper presents a preprocessing method to modify the input audio signals of a speech coder to obtain the finally enhanced signals at the decoder. For the purpose, we introduce the noise suppression (NS) scheme and the adaptive gain control (AGC) where an audio input and its coding error are considered as a noisy signal and a noise, respectively. The coding error is suppressed from the input and then the suppressed input is level aligned to the original input by the following AGC operation. Consequently, this preprocessing method makes the spectral energy of the music input redistributed all over the spectral domain so that the preprocessed music can be coded more effectively by the following coder. As an artifact, this procedure needs an additional encoding pass to calculate the coding error. However, it provides a generalized formulation applicable to a lot of existing speech coders. By preference listening tests, it was indicated that the proposed approach produces significant enhancements in the perceived music qualities.

Performance Analysis of Noisy Speech Recognition Depending on Parameters for Noise and Signal Power Estimation in MMSE-STSA Based Speech Enhancement (MMSE-STSA 기반의 음성개선 기법에서 잡음 및 신호 전력 추정에 사용되는 파라미터 값의 변화에 따른 잡음음성의 인식성능 분석)

  • Park Chul-Ho;Bae Keun-Sung
    • MALSORI
    • /
    • no.57
    • /
    • pp.153-164
    • /
    • 2006
  • The MMSE-STSA based speech enhancement algorithm is widely used as a preprocessing for noise robust speech recognition. It weighs the gain of each spectral bin of the noisy speech using the estimate of noise and signal power spectrum. In this paper, we investigate the influence of parameters used to estimate the speech signal and noise power in MMSE-STSA upon the recognition performance of noisy speech. For experiments, we use the Aurora2 DB which contains noisy speech with subway, babble, car, and exhibition noises. The HTK-based continuous HMM system is constructed for recognition experiments. Experimental results are presented and discussed with our findings.

  • PDF

The Effect of the Telephone Channel to the Performance of the Speaker Verification System (전화선 채널이 화자확인 시스템의 성능에 미치는 영향)

  • 조태현;김유진;이재영;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.12-20
    • /
    • 1999
  • In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.

  • PDF

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.

ON A REDUCTION OF PITCH SEARCHING TIME BY PREPROCESSING IN THE CELP VOCODER

  • Kim, Daesik;Bae, Myungjin;Kim, Jongjae;Byun, Kyungjin;Han, Kichun;Yoo, Hahyoung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.904-911
    • /
    • 1994
  • Code Excited Linear Prediction (CELP) speech coders exhibit good performance at data rates below 4.8 kbps. The major drawback to CELP type coders is their many computation. In this paper, we propose a new pitch search method that preserves the quality of the CELP vocoder with reducing complexity. The basic idea is to apply the preprocessing technique beforehand grasping the autocorrelation property of speech waveform. By using the proposed method, we can get approximately 77% complexity reduction in the pitch search.

  • PDF