In this paper, we propose the HMM with the MIN module. Because initial and re-estimated variance vectors are important elements for performance in HMM recognition systems, we propose a method which compensates for the mismatched statistical feature of training and test data. The MIN module function is a differentiable function similar to the sigmoid function. Unlike a continuous density function, it does not include variance vectors of the data set. The proposed hybrid HMM/MIN module is a unified network in which the observation probability in the HMM is replaced by the MIN module neural network. The parameters in the unified network are re-estimated by the gradient descent method for the Maximum Likelihood (ML) criterion. In estimating parameters, the variance vector is not estimated because there is no variance element in the MIN module function. The experiment was performed to compare the performance of the proposed HMM and the conventional HMM. The experiment measured an isolated number for speaker independent recognition.
본 연구는 스펙트럼의 동적 특징을 한 파라메타로 하는 DHMM(Dynamic Hidden Markov Model)을 이용한 단독어인식에 관한 것으로 정적 스펙트럼 특징뿐 아니라 동적 스펙트럼 특징을 평가할 수 있는 DHMM에 근거한 음성 인식 실험을 논의 한다. 정적특징으로는 LPC cepstrum 계수를 이용하였고, 동적특징으로는 LPC cepstrum 의 회귀계수를 사용하였다. 이들 두 개의 특징 벡터들을 각각 집단화하여 만든 두 VQ codebook과 입력으로 받아들인 정적 벡터및 동적벡터로 단어들을 DHMM(Dynamic Hidden Markov Model)으로 모델링 하였다. 전체적인 실험에서 기존의 HMM을 이용한 인식실험에서는 88.8%의 인식율을 얻었는데 반해, DHMM을 이용한 인식실험에서는 92.7%의 인식율을 보였다.
In this paper, we carried out some experiments on the Korean vowel recognition using the fractal dimension of the speech signals. We chose the Mincowski-Bouligand dimensioni as the fractal dimension, and computed it using the morphological covering method. For our experiments, we used both the fractal dimension and the LPC cepstrum which is conventionally known to be one of the best parameters for speech recognition, and examined the usefulness of the fractal dimension. From the vowel recognition experiments under various consonant contexts, we achieved the vowel recognition error rats of 5.6% and 3.2% for the case with only LPC cepstrum and that with both LPC cepstrum and the fractal dimension, respectively. The results indicate that the incorporation of the fractal dimension with LPC cepstrum gies more than 40% reduction in recognition errors, and indicates that the fractal dimension is a useful feature parameter for speech recognition.
The teach pendant and keyboard have been used as an input device of control command in human-robot sustem. But, many problems occur in case that the usef is a novice. So, speech recognition system is required to communicate between a human and the robot. In this study, Korean voice commands, eitht robot commands, and ten digits based on the broad phonetic analysis are described. Applying broad phonetic analysis, phonemes of voice commands are divided into phoneme groups, such as plosive, fricative, affricative, nasal, and glide sound, having similar features. And then, the feature parameters and their ranges to detect phoneme groups are found by minimax method. Classification rules are consisted of combination of the feature parameters, such as zero corssing rate(ZCR), log engery(LE), up and down(UD), formant frequency, and their ranges. Voice commands were recognized by the classification rules. The recognition rate was over 90 percent in this experiment. Also, this experiment showed that the recognition rate about digits was better than that about robot commands.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.142-147
/
1998
Recently, 8 kb/s CS-ACELP coder of G.729 is atandardized by ITU-T SG15 and it has been reported that the speech quality of G729 is better than or equal to that of 32kb/s ADPCM. However G.729 is the fixed rate speech coder, and it does not consider the property of voice activity in mutual conversation. If we use the voice activity, we can reduce the average bit rate in half without any degradations of the speech quality. In this paper, we propose an efficient variable rate algorithm for G.729. The variable rate algorithm consists of two main subjects, the rate determination algorithm and algorithm, we combine the energy-thresholding method, the phonetic segmentation method by integration of various feature parameters obtained through the analysis procedure, and the variable hangover period method. Through the analysis of noise features, the 1 kb/s sub rate coder is designed for coding the background noise signal. So, we design the 4 kb/s sub rate coder for the unvoiced parts. The performance of the variable rate algorithm is evaluated by the comparison of speed quality and average bit rate with G.729. Subjective quality test is also done by MOS test. Conclusively, it is verified that the proposed variable rate CS-ACELP coder produced the same speech quality as G.729, at the average bit rate of 4.4 kb/s.
유효한 무성음이 시스템 노이즈와 합성됐을 경우 유효한 무성음 추출에 많은 어려움이 있으나 본 논문에서는 유효한 무성음 추출에 있어 이산 웨이브렛 변환을 이용한 신호 해석 내용을 기반으로 주파수와 그 위치를 블록별로 머징 규칙으로 유효 여부를 결정하기 때문에 노이즈가 많은 환경에서도 유효한 무성음 추출이 가능하다. 머징 알고리즘은 음성만으로도 처리 매개변수를 결정할 수 있고 시스템 잡음에 대하여서도 독립적이기 때문에 유효한 음성을 추출하는데 매우 효과적이다. 실험 결과를 통하여 유효한 음성 추출 처리 과정에서 보다 향상된 결과를 보이고 있으며 특히 고주파 노이즈에 대한 강한 적응력을 제시하고 시스템 구현에도 용이한 시스템 튜닝을 가능케 한다.
Sums-of-Products models were built for segment duration prediction of spoken Korean. An experiment for the modelling was carried out to apply the results to Korean text-to-speech synthesis systems. 670 read sentences were analyzed. trained and tested for the construction of the duration models. Traditional sequential rule systems were extended to simple additive, multiplicative and additive-multiplicative models based on Sums-of-Products modelling. The parameters used in the modelling include the properties of the target segment and its neighbors and the target segment's position in the prosodic structure. Two optimisation strategies were used: the downhill simplex method and the simulated annealing method. The performance of the models was measured by the correlation coefficient and the root mean squared prediction error (RMSE) between actual and predicted duration in the test data. The best performance was obtained when the data was trained and tested by ' additive-multiplicative models. ' The correlation for the vowel duration prediction was 0.69 and the RMSE. 31.80 ms. while the correlation for the consonant duration prediction was 0.54 and the RMSE. 29.02 ms. The results were not good enough to be applied to the real-time text-to-speech systems. Further investigation of feature interactions is required for the better performance of the Sums-of-Products models.
본 논문에서는 여러 프레임 특징으로 표현되는 분절 특징(segmental feature) 표현 방법을 제안하고, HMM 개념 위에서 음향학적 모델과 그 알고리즘을 개발하여 HMM의 약점으로 지적되는 독립관측 가정을 완화시키고자 한다. 제안된 특징 표현은 단일 프레임 특징이 음성 신호의 시간적 동적 특성 (temporal dynamics)을 제대로 표현하지 못하기 때문에, 여러 프레임을 이용하여 음성 특징을 표현하도록 한다. 분절 특징은 다항식의 회귀 함수(polynomial regression function)에 의하여 관측 벡터의 궤적으로 표현되고, 이 특징을 패턴 분류에 사용하기 위하여 음성 신호의 궤적을 효과적으로 표현하는 분절 HMM(segmental HMM)을 이용한다. SHMM은 상태에서의 관측 확률을 외적 분절 변이와 내적 분절 변이로 세분하며, 외적 분절 변이는 장기적인 변화를, 내적 분절 변이는 단기적인 변화를 나타낸다. 음향학적 모델에서 분절 특성을 고려하기 위하여 외적 분절 변이는 분절의 확률 분포로 표현하고, 내적 분절 변이는 궤적의 추정 오차로 표현하도록 SHMM을 수정한 분절 특징 HMM(SFHMM; segmental-feature HMM)을 제안한다. SFHMM에서는 분절의 관측 확률을 분절 우도와 궤적의 추정 오차의 관계로써 표현하며, 추정오차는 특정 상태에서의 분절의 우도에 대한 가중치로 고려될 수 있다. 제안된 방법의 유효성과 분절 특징의 특성을 살펴보기 위하여 TIMIT 자료를 이용하여 몇 가지 실험을 하였다. 이들 실험 결과에서, 제안된 방법이 기존의 HMM보다 매개 변수가 많더라도, 성능의 향상과 제안된 특징이 유연하고 정보를 많이 가진다는 점에서 의미가 있다고 하겠다.
음성 인식에 많이 사용되는 HMM (hidden Markov model)을 개선하기 위하여 분절 특징을 사용한 분절 특징 HMM은 성능이 우수하다고 발표되었다. 그러나, 분절 길이가 증가하고 회귀 차수가 놓아질수록 분절 특징 HMM을 표현하는 매개 변수의 수도 같이 증가된다. 따라서, 본 연구에서는 상태에서 관측 가능한 분절의 분산을 분절 내의 모든 프레임에 대하여 공통적으로 표현하는 고정 분산 방법을 통하여 성능의 저하 없이 매개 변수의 수를 줄이도록 시도하였다. 실험 결과, 두 혼합 밀도인 경우 고정 분산을 이용한 분절 특징 HMM의 성능과 시변 분산을 이용한 성능의 차이가 거의 없어, 제안된 방법의 유효성을 입증하였다.
DNN은 기존의 음성 인식 시스템에 비해 에러가 적으나 병렬 훈련이 어렵고, 계산의 양이 많으며, 많은 양의 데이터 확보를 필요로 한다. 본 논문에서는 이러한 문제를 효율적으로 해결하기 위해 GMM에서 모델 파라메터를 가지고 음소별 GMM 파라메터를 추정하여 음소 단위를 생성한다. 그리고 이를 효율적으로 적용하기 위해 특정 어휘에 대한 클러스터링을 통해 성능을 향상시키기 위한 방법을 제안한다. 이를 위해 3가지 종류의 단어 음성 데이터베이스를 이용하여 DB를 가지고 어휘 모델을 구축하였고, 잡음 처리는 워너필터를 사용한 특징을 추출하여 음성 인식실험에 사용하였다. 본 논문에서 제안한 방법을 사용한 결과 음성 인식률에서 97.9%의 인식률을 나타내었다. 본 연구에서 개선된 오버피팅의 문제점을 향상시킬 수 있는 추가적인 연구를 필요로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.