• 제목/요약/키워드: speech feature parameters

검색결과 130건 처리시간 0.023초

MIN 모듈을 갖는 준연속 Hidden Markov Model (Semi-Continuous Hidden Markov Model with the MIN Module)

  • 김대극;이정주;정호균;이상희
    • 음성과학
    • /
    • 제7권4호
    • /
    • pp.11-26
    • /
    • 2000
  • In this paper, we propose the HMM with the MIN module. Because initial and re-estimated variance vectors are important elements for performance in HMM recognition systems, we propose a method which compensates for the mismatched statistical feature of training and test data. The MIN module function is a differentiable function similar to the sigmoid function. Unlike a continuous density function, it does not include variance vectors of the data set. The proposed hybrid HMM/MIN module is a unified network in which the observation probability in the HMM is replaced by the MIN module neural network. The parameters in the unified network are re-estimated by the gradient descent method for the Maximum Likelihood (ML) criterion. In estimating parameters, the variance vector is not estimated because there is no variance element in the MIN module function. The experiment was performed to compare the performance of the proposed HMM and the conventional HMM. The experiment measured an isolated number for speaker independent recognition.

  • PDF

DHMM을 이용한 한국어 음성 인식 (Korean Speech Recognition using DHMM)

  • 안태옥;이강성;유형근;이형준;조형제;변용규;김순협
    • 한국음향학회지
    • /
    • 제10권1호
    • /
    • pp.52-60
    • /
    • 1991
  • 본 연구는 스펙트럼의 동적 특징을 한 파라메타로 하는 DHMM(Dynamic Hidden Markov Model)을 이용한 단독어인식에 관한 것으로 정적 스펙트럼 특징뿐 아니라 동적 스펙트럼 특징을 평가할 수 있는 DHMM에 근거한 음성 인식 실험을 논의 한다. 정적특징으로는 LPC cepstrum 계수를 이용하였고, 동적특징으로는 LPC cepstrum 의 회귀계수를 사용하였다. 이들 두 개의 특징 벡터들을 각각 집단화하여 만든 두 VQ codebook과 입력으로 받아들인 정적 벡터및 동적벡터로 단어들을 DHMM(Dynamic Hidden Markov Model)으로 모델링 하였다. 전체적인 실험에서 기존의 HMM을 이용한 인식실험에서는 88.8%의 인식율을 얻었는데 반해, DHMM을 이용한 인식실험에서는 92.7%의 인식율을 보였다.

  • PDF

프랙탈 차원을 이용한 모음인식 (Vowel Recognition Using the Fractal Dimensioin)

  • 최철영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.364-367
    • /
    • 1994
  • In this paper, we carried out some experiments on the Korean vowel recognition using the fractal dimension of the speech signals. We chose the Mincowski-Bouligand dimensioni as the fractal dimension, and computed it using the morphological covering method. For our experiments, we used both the fractal dimension and the LPC cepstrum which is conventionally known to be one of the best parameters for speech recognition, and examined the usefulness of the fractal dimension. From the vowel recognition experiments under various consonant contexts, we achieved the vowel recognition error rats of 5.6% and 3.2% for the case with only LPC cepstrum and that with both LPC cepstrum and the fractal dimension, respectively. The results indicate that the incorporation of the fractal dimension with LPC cepstrum gies more than 40% reduction in recognition errors, and indicates that the fractal dimension is a useful feature parameter for speech recognition.

  • PDF

산업용 로보트의 동작제어 명령어의 인식에 관한 연구 (A study on the voice command recognition at the motion control in the industrial robot)

  • 이순요;권규식;김홍태
    • 대한인간공학회지
    • /
    • 제10권1호
    • /
    • pp.3-10
    • /
    • 1991
  • The teach pendant and keyboard have been used as an input device of control command in human-robot sustem. But, many problems occur in case that the usef is a novice. So, speech recognition system is required to communicate between a human and the robot. In this study, Korean voice commands, eitht robot commands, and ten digits based on the broad phonetic analysis are described. Applying broad phonetic analysis, phonemes of voice commands are divided into phoneme groups, such as plosive, fricative, affricative, nasal, and glide sound, having similar features. And then, the feature parameters and their ranges to detect phoneme groups are found by minimax method. Classification rules are consisted of combination of the feature parameters, such as zero corssing rate(ZCR), log engery(LE), up and down(UD), formant frequency, and their ranges. Voice commands were recognized by the classification rules. The recognition rate was over 90 percent in this experiment. Also, this experiment showed that the recognition rate about digits was better than that about robot commands.

  • PDF

W-CDMA 시스템을 위한 가변율 음성코덱 설계 (Design of a variable rate speech codec for the W-CDMA system)

  • 정우성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.142-147
    • /
    • 1998
  • Recently, 8 kb/s CS-ACELP coder of G.729 is atandardized by ITU-T SG15 and it has been reported that the speech quality of G729 is better than or equal to that of 32kb/s ADPCM. However G.729 is the fixed rate speech coder, and it does not consider the property of voice activity in mutual conversation. If we use the voice activity, we can reduce the average bit rate in half without any degradations of the speech quality. In this paper, we propose an efficient variable rate algorithm for G.729. The variable rate algorithm consists of two main subjects, the rate determination algorithm and algorithm, we combine the energy-thresholding method, the phonetic segmentation method by integration of various feature parameters obtained through the analysis procedure, and the variable hangover period method. Through the analysis of noise features, the 1 kb/s sub rate coder is designed for coding the background noise signal. So, we design the 4 kb/s sub rate coder for the unvoiced parts. The performance of the variable rate algorithm is evaluated by the comparison of speed quality and average bit rate with G.729. Subjective quality test is also done by MOS test. Conclusively, it is verified that the proposed variable rate CS-ACELP coder produced the same speech quality as G.729, at the average bit rate of 4.4 kb/s.

  • PDF

이산 웨이브렛 변환을 이용한 유효 음성 추출에 관한 연구 (A Study on Extracting Valid Speech Sounds by the Discrete Wavelet Transform)

  • 김진옥;황대준;백한욱;정진현
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.231-236
    • /
    • 2002
  • 유효한 무성음이 시스템 노이즈와 합성됐을 경우 유효한 무성음 추출에 많은 어려움이 있으나 본 논문에서는 유효한 무성음 추출에 있어 이산 웨이브렛 변환을 이용한 신호 해석 내용을 기반으로 주파수와 그 위치를 블록별로 머징 규칙으로 유효 여부를 결정하기 때문에 노이즈가 많은 환경에서도 유효한 무성음 추출이 가능하다. 머징 알고리즘은 음성만으로도 처리 매개변수를 결정할 수 있고 시스템 잡음에 대하여서도 독립적이기 때문에 유효한 음성을 추출하는데 매우 효과적이다. 실험 결과를 통하여 유효한 음성 추출 처리 과정에서 보다 향상된 결과를 보이고 있으며 특히 고주파 노이즈에 대한 강한 적응력을 제시하고 시스템 구현에도 용이한 시스템 튜닝을 가능케 한다.

Sums-of-Products Models for Korean Segment Duration Prediction

  • Chung, Hyun-Song
    • 음성과학
    • /
    • 제10권4호
    • /
    • pp.7-21
    • /
    • 2003
  • Sums-of-Products models were built for segment duration prediction of spoken Korean. An experiment for the modelling was carried out to apply the results to Korean text-to-speech synthesis systems. 670 read sentences were analyzed. trained and tested for the construction of the duration models. Traditional sequential rule systems were extended to simple additive, multiplicative and additive-multiplicative models based on Sums-of-Products modelling. The parameters used in the modelling include the properties of the target segment and its neighbors and the target segment's position in the prosodic structure. Two optimisation strategies were used: the downhill simplex method and the simulated annealing method. The performance of the models was measured by the correlation coefficient and the root mean squared prediction error (RMSE) between actual and predicted duration in the test data. The best performance was obtained when the data was trained and tested by ' additive-multiplicative models. ' The correlation for the vowel duration prediction was 0.69 and the RMSE. 31.80 ms. while the correlation for the consonant duration prediction was 0.54 and the RMSE. 29.02 ms. The results were not good enough to be applied to the real-time text-to-speech systems. Further investigation of feature interactions is required for the better performance of the Sums-of-Products models.

  • PDF

분절 특징 HMM을 이용한 영어 음소 인식 (English Phoneme Recognition using Segmental-Feature HMM)

  • 윤영선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.167-179
    • /
    • 2002
  • 본 논문에서는 여러 프레임 특징으로 표현되는 분절 특징(segmental feature) 표현 방법을 제안하고, HMM 개념 위에서 음향학적 모델과 그 알고리즘을 개발하여 HMM의 약점으로 지적되는 독립관측 가정을 완화시키고자 한다. 제안된 특징 표현은 단일 프레임 특징이 음성 신호의 시간적 동적 특성 (temporal dynamics)을 제대로 표현하지 못하기 때문에, 여러 프레임을 이용하여 음성 특징을 표현하도록 한다. 분절 특징은 다항식의 회귀 함수(polynomial regression function)에 의하여 관측 벡터의 궤적으로 표현되고, 이 특징을 패턴 분류에 사용하기 위하여 음성 신호의 궤적을 효과적으로 표현하는 분절 HMM(segmental HMM)을 이용한다. SHMM은 상태에서의 관측 확률을 외적 분절 변이와 내적 분절 변이로 세분하며, 외적 분절 변이는 장기적인 변화를, 내적 분절 변이는 단기적인 변화를 나타낸다. 음향학적 모델에서 분절 특성을 고려하기 위하여 외적 분절 변이는 분절의 확률 분포로 표현하고, 내적 분절 변이는 궤적의 추정 오차로 표현하도록 SHMM을 수정한 분절 특징 HMM(SFHMM; segmental-feature HMM)을 제안한다. SFHMM에서는 분절의 관측 확률을 분절 우도와 궤적의 추정 오차의 관계로써 표현하며, 추정오차는 특정 상태에서의 분절의 우도에 대한 가중치로 고려될 수 있다. 제안된 방법의 유효성과 분절 특징의 특성을 살펴보기 위하여 TIMIT 자료를 이용하여 몇 가지 실험을 하였다. 이들 실험 결과에서, 제안된 방법이 기존의 HMM보다 매개 변수가 많더라도, 성능의 향상과 제안된 특징이 유연하고 정보를 많이 가진다는 점에서 의미가 있다고 하겠다.

분절 특징 HMM의 매개 변수 수의 감소에 관한 연구 (Reduction of Number of Free Parameters in Segmental-feature HMM)

  • 윤영선;오영환
    • 한국음향학회지
    • /
    • 제19권7호
    • /
    • pp.48-52
    • /
    • 2000
  • 음성 인식에 많이 사용되는 HMM (hidden Markov model)을 개선하기 위하여 분절 특징을 사용한 분절 특징 HMM은 성능이 우수하다고 발표되었다. 그러나, 분절 길이가 증가하고 회귀 차수가 놓아질수록 분절 특징 HMM을 표현하는 매개 변수의 수도 같이 증가된다. 따라서, 본 연구에서는 상태에서 관측 가능한 분절의 분산을 분절 내의 모든 프레임에 대하여 공통적으로 표현하는 고정 분산 방법을 통하여 성능의 저하 없이 매개 변수의 수를 줄이도록 시도하였다. 실험 결과, 두 혼합 밀도인 경우 고정 분산을 이용한 분절 특징 HMM의 성능과 시변 분산을 이용한 성능의 차이가 거의 없어, 제안된 방법의 유효성을 입증하였다.

  • PDF

GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering)

  • 오상엽
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.35-39
    • /
    • 2020
  • DNN은 기존의 음성 인식 시스템에 비해 에러가 적으나 병렬 훈련이 어렵고, 계산의 양이 많으며, 많은 양의 데이터 확보를 필요로 한다. 본 논문에서는 이러한 문제를 효율적으로 해결하기 위해 GMM에서 모델 파라메터를 가지고 음소별 GMM 파라메터를 추정하여 음소 단위를 생성한다. 그리고 이를 효율적으로 적용하기 위해 특정 어휘에 대한 클러스터링을 통해 성능을 향상시키기 위한 방법을 제안한다. 이를 위해 3가지 종류의 단어 음성 데이터베이스를 이용하여 DB를 가지고 어휘 모델을 구축하였고, 잡음 처리는 워너필터를 사용한 특징을 추출하여 음성 인식실험에 사용하였다. 본 논문에서 제안한 방법을 사용한 결과 음성 인식률에서 97.9%의 인식률을 나타내었다. 본 연구에서 개선된 오버피팅의 문제점을 향상시킬 수 있는 추가적인 연구를 필요로 한다.