• 제목/요약/키워드: speech emotion recognition

검색결과 135건 처리시간 0.122초

Analyzing the element of emotion recognition from speech (음성으로부터 감성인식 요소 분석)

  • 박창현;심재윤;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.199-202
    • /
    • 2001
  • 일반적으로 음성신호로부터 사람의 감정을 인식할 수 있는 요소는 (1)대화의 내용에 사용한 단어, (2)톤 (Tone), (3)음성신호의 피치(Pitch), (4)포만트 주파수(Formant Frequency), 그리고 (5)말의 빠르기(Speech Speed) (6)음질(Voice Quality) 등이다. 사람의 경우는 주파수 같은 분석요소 보다는 론과 단어, 빠르기, 음질로 감정을 받아들이게 되는 것이 자연스러운 방법이므로 당연히 후자의 요소들이 감정을 분류하는데 중요한 인자로 쓰일 수 있다. 그리고, 종래는 주로 후자의 요소들을 이용하였는데, 기계로써 구현하기 위해서는 조금 더 공학적인 포만트 주파수를 사용할 수 있게 되는 것이 도움이 된다. 그러므로, 본 연구는 음성 신호로부터 피치와 포만트, 그리고 말의 빠르기 등을 이용하여 감성 인식시스템을 구현하는 것을 목표로 연구를 진행하고 있는데, 그 1단계 연구로서 본 논문에서는 화가 나서 내뱉는 알과 기쁠 때 간단하게 사용하는 말들을 기반으로 하여 극단적인 두 가지 감정의 독특한 특성을 찾아낸다.

  • PDF

Therapeutic Robot Action Design for ASD Children Using Speech Data (음성 정보를 이용한 자폐아 치료용 로봇의 동작 설계)

  • Lee, Jin-Gyu;Lee, Bo-Hee
    • Journal of IKEEE
    • /
    • 제22권4호
    • /
    • pp.1123-1130
    • /
    • 2018
  • A cat robot for the Autism Spectrum Disorders(ASD) treatment was designed and conducted field test. The designed robot had emotion expressing action through interaction by the touch, and performed a reasonable emotional expression based on Artificial Neural Network(ANN). However these operations were difficult to use in the various healing activities. In this paper, we describe a motion design that can be used in a variety of contexts and flexibly reaction with various kinds of situations. As a necessary element, the speech recognition system using the speech data collection method and ANN was suggested and the classification results were analyzed after experiment. This ANN will be improved through collecting various voice data to raise the accuracy in the future and checked the effectiveness through field test.

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

Design and Implementation of Mobile Communication System for Hearing- impaired Person (청각 장애인을 위한 모바일 통화 시스템 설계 및 구현)

  • Yun, Dong-Hee;Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제16권5호
    • /
    • pp.111-116
    • /
    • 2016
  • According to the Ministry of Science, ICT and Future Planning's survey of information gap, smartphone retention rate of disabled people stayed in one-third of non-disabled people, the situation is significantly less access to information for people with disabilities than non-disabled people. In this paper, we develop an application, CallHelper, that helps to be more convenient to use mobile voice calls to the auditory disabled people. CallHelper runs automatically when a call comes in, translates caller's voice to text output on the mobile screen, and displays the emotion reasoning from the caller's voice to visualize emoticons. It also saves voice, translated text, and emotion data that can be played back.

Development of Emotion Recognition and Expression module with Speech Signal for Entertainment Robot (엔터테인먼트 로봇을 위한 음성으로부터 감정 인식 및 표현 모듈 개발)

  • Mun, Byeong-Hyeon;Yang, Hyeon-Chang;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.82-85
    • /
    • 2007
  • 현재 가정을 비롯한 여러 분야에서 서비스 로봇(청소 로봇, 애완용 로봇, 멀티미디어 로봇 둥)의 사용이 증가하고 있는 시장상황을 보이고 있다. 개인용 서비스 로봇은 인간 친화적 특성을 가져야 그 선호도가 높아질 수 있는데 이를 위해서 사용자의 감정 인식 및 표현 기술은 필수적인 요소이다. 사람들의 감정 인식을 위해 많은 연구자들은 음성, 사람의 얼굴 표정, 생체신호, 제스쳐를 통해서 사람들의 감정 인식을 하고 있다. 특히, 음성을 인식하고 적용하는 것에 관한 연구가 활발히 진행되고 있다. 본 논문은 감정 인식 시스템을 두 가지 방법으로 제안하였다. 현재 많이 개발 되어지고 있는 음성인식 모듈을 사용하여 단어별 감정을 분류하여 감정 표현 시스템에 적용하는 것과 마이크로폰을 통해 습득된 음성신호로부터 특정들을 검출하여 Bayesian Learning(BL)을 적용시켜 normal, happy, sad, surprise, anger 등 5가지의 감정 상태로 패턴 분류를 한 후 이것을 동적 감정 표현 알고리즘의 입력값으로 하여 dynamic emotion space에 사람의 감정을 표현할 수 있는 ARM 플랫폼 기반의 음성 인식 및 감정 표현 시스템 제안한 것이다.

  • PDF

Design and implement of the Educational Humanoid Robot D2 for Emotional Interaction System (감성 상호작용을 갖는 교육용 휴머노이드 로봇 D2 개발)

  • Kim, Do-Woo;Chung, Ki-Chull;Park, Won-Sung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1777-1778
    • /
    • 2007
  • In this paper, We design and implement a humanoid robot, With Educational purpose, which can collaborate and communicate with human. We present an affective human-robot communication system for a humanoid robot, D2, which we designed to communicate with a human through dialogue. D2 communicates with humans by understanding and expressing emotion using facial expressions, voice, gestures and posture. Interaction between a human and a robot is made possible through our affective communication framework. The framework enables a robot to catch the emotional status of the user and to respond appropriately. As a result, the robot can engage in a natural dialogue with a human. According to the aim to be interacted with a human for voice, gestures and posture, the developed Educational humanoid robot consists of upper body, two arms, wheeled mobile platform and control hardware including vision and speech capability and various control boards such as motion control boards, signal processing board proceeding several types of sensors. Using the Educational humanoid robot D2, we have presented the successful demonstrations which consist of manipulation task with two arms, tracking objects using the vision system, and communication with human by the emotional interface, the synthesized speeches, and the recognition of speech commands.

  • PDF

How to Express Emotion: Role of Prosody and Voice Quality Parameters (감정 표현 방법: 운율과 음질의 역할)

  • Lee, Sang-Min;Lee, Ho-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • 제19권11호
    • /
    • pp.159-166
    • /
    • 2014
  • In this paper, we examine the role of emotional acoustic cues including both prosody and voice quality parameters for the modification of a word sense. For the extraction of prosody parameters and voice quality parameters, we used 60 pieces of speech data spoken by six speakers with five different emotional states. We analyzed eight different emotional acoustic cues, and used a discriminant analysis technique in order to find the dominant sequence of acoustic cues. As a result, we found that anger has a close relation with intensity level and 2nd formant bandwidth range; joy has a relative relation with the position of 2nd and 3rd formant values and intensity level; sadness has a strong relation only with prosody cues such as intensity level and pitch level; and fear has a relation with pitch level and 2nd formant value with its bandwidth range. These findings can be used as the guideline for find-tuning an emotional spoken language generation system, because these distinct sequences of acoustic cues reveal the subtle characteristics of each emotional state.

Research on Classification of Human Emotions Using EEG Signal (뇌파신호를 이용한 감정분류 연구)

  • Zubair, Muhammad;Kim, Jinsul;Yoon, Changwoo
    • Journal of Digital Contents Society
    • /
    • 제19권4호
    • /
    • pp.821-827
    • /
    • 2018
  • Affective computing has gained increasing interest in the recent years with the development of potential applications in Human computer interaction (HCI) and healthcare. Although momentous research has been done on human emotion recognition, however, in comparison to speech and facial expression less attention has been paid to physiological signals. In this paper, Electroencephalogram (EEG) signals from different brain regions were investigated using modified wavelet energy features. For minimization of redundancy and maximization of relevancy among features, mRMR algorithm was deployed significantly. EEG recordings of a publically available "DEAP" database have been used to classify four classes of emotions with Multi class Support Vector Machine. The proposed approach shows significant performance compared to existing algorithms.

An Emotion Recognition Technique Using Speech Signals (음성신호를 이용한 감정인식)

  • Jeong, Byeong-Uk;Cheon, Seong-Pyo;Kim, Yeon-Tae;Kim, Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.123-126
    • /
    • 2007
  • 본 논문은 음성신호를 이용한 감정인식에 관한 연구이다. 감정인식에 관한 연구는 휴먼 인터페이스(Human Interface) 기술의 발전에서 인간과 기계의 상호작용을 위한 것이다. 본 연구에서는 음성신호를 이용하여 감정을 분석하고자 한다. 음성신호의 감정인식을 위해서 음성신호의 특정을 추출하여야한다. 본 논문에서는 개인에 따른 음성신호의 감정인식을 하고자하였다. 그래서 화자인식에 많이 사용되는 음성신호 분석기법인 Perceptual Linear Prediction(PLP) 분석을 이용하여 음성신호의 특정을 추출하였다. 본 연구에서는 PLP 분석을 통하여 개인화된 감정 패턴을 생성하여 간단하면서도 실시간으로 음성신호로부터 감정을 평가 할 수 있는 알고리즘을 만들었다.

  • PDF

Speech emotion recognition for affective human robot interaction (감성적 인간 로봇 상호작용을 위한 음성감정 인식)

  • Jang, Kwang-Dong;Kwon, Oh-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.555-558
    • /
    • 2006
  • 감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.

  • PDF