• 제목/요약/키워드: speech database

검색결과 331건 처리시간 0.025초

음성인식을 이용한 고객센터 자동 호 분류 시스템 (Automated Call Routing Call Center System Based on Speech Recognition)

  • 심유진;김재인;구명완
    • 음성과학
    • /
    • 제12권2호
    • /
    • pp.183-191
    • /
    • 2005
  • This paper describes the automated call routing for call center system based on speech recognition. We focus on the task of automatically routing telephone calls based on a users fluently spoken response instead of touch tone menus in an interactive voice response system. Vector based call routing algorithm is investigated and normalization method suggested. Call center database which was collected by KT is used for call routing experiment. Experimental results evaluating call-classification from transcribed speech are reported for that database. In case of small training data, an average call routing error reduction rate of 9% is observed when normalization method is used.

  • PDF

Multiple Acoustic Cues for Stop Recognition

  • Yun, Weon-Hee
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.3-16
    • /
    • 2003
  • ㆍAcoustic characteristics of stops in speech with contextual variability ㆍPosibility of stop recognition by post processing technique ㆍFurther work - Speech database - Modification of decoder - automatic segmentation of acoustic parameters

  • PDF

미전사 음성 데이터베이스를 이용한 가우시안 혼합 모델 적응 기반의 음성 인식용 음향 모델 변환 기법 (Acoustic Model Transformation Method for Speech Recognition Employing Gaussian Mixture Model Adaptation Using Untranscribed Speech Database)

  • 김우일
    • 한국정보통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.1047-1054
    • /
    • 2015
  • 본 논문에서는 음성 인식 성능 향상을 위해 미전사된 음성 데이터베이스를 이용한 효과적인 음향 모델 변환 기법을 기술한다. 본 논문에서 기술하는 모델 변환 기법에서는 기존의 적응 기법을 이용하여 환경에 적응된 GMM을 얻는다. HMM의 가우시안 요소와 유사한 요소를 선택하여 선택된 가우시안 요소의 변환 벡터를 구하고 이를 평균 파라미터 변환에 이용한다. GMM 적응 기반의 모델 변환 기법을 기존의 MAP, MLLR 적응 기법과 결합하여 적용한 결과, 자동차 잡음과 음성 Babble 잡음 환경에서 기존의 MAP, MLLR을 단독으로 사용할 경우보다 높은 음성 인식성능을 나타낸다. 온라인 음향 모델 적응 실험에서도 MLLR과 결합할 경우 기존의 MLLR을 단독으로 사용할 때보다 효과적인 모델 적응 성능을 나타낸다. 이와 같은 결과는 본 논문에서 소개한 GMM 적응 기반의 모델 변환 기법을 채용함으로써 미전사된 음성 데이터베이스를 음향 모델 적응 기법에 효과적으로 활용할 수 있음을 입증한다.

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

차량항법 시스템을 위한 소형 음성합성 엔진 (Speech synthesis engine for car navigation systems)

  • 김경하;서흥석;박찬식;성태경;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.338-338
    • /
    • 2000
  • This paper proposes a modified TD-PSOLA algorithm for Korean speech synthesis. A WSS (Weighted score search) algorithm is proposed for pitch detection and speech synthesis engine is designed using 46 phones database.

  • PDF

한국어 음성데이터를 이용한 일본어 음향모델 성능 개선 (An Enhancement of Japanese Acoustic Model using Korean Speech Database)

  • 이민규;김상훈
    • 한국음향학회지
    • /
    • 제32권5호
    • /
    • pp.438-445
    • /
    • 2013
  • 본 논문은 일본어 음성인식기 신규 개발을 위해 초기에 부족한 일본어 음성데이터를 보완하는 방법이다. 일본어 발음과 한국어 발음이 유사한 특성을 근거로 한국어 음성 데이터를 이용한 일본어 음향모델 성능개선 방법에 대하여 기술하였다. 이종언어 간 음성 데이터를 섞어서 훈련하는 방법인 Cross-Language Transfer, Cross-Language Adaptation, Data Pooling Approach등 방법을 설명하고, 각 방법들의 시뮬레이션을 통해 현재 보유하고 있는 일본어 음성데이터 양에 적절한 방법을 선정하였다. 기존의 방법들은 훈련용 음성데이터가 크게 부족한 환경에서의 효과는 검증되었으나, 목적 언어의 데이터가 어느 정도 확보된 상태에서는 성능 개선 효과가 미비하였다. 그러나 Data Pooling Approach의 훈련과정 중 Tyied-List를 목적 언어로만으로 구성 하였을 때, ERR(Error Reduction Rate)이 12.8 %로 성능이 향상됨을 확인하였다.

A Fixed Rate Speech Coder Based on the Filter Bank Method and the Inflection Point Detection

  • Iem, Byeong-Gwan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.276-280
    • /
    • 2016
  • A fixed rate speech coder based on the filter bank and the non-uniform sampling technique is proposed. The non-uniform sampling is achieved by the detection of inflection points (IPs). A speech block is band passed by the filter bank, and the subband signals are processed by the IP detector, and the detected IP patterns are compared with entries of the IP database. For each subband signal, the address of the closest member of the database and the energy of the IP pattern are transmitted through channel. In the receiver, the decoder recovers the subband signals using the received addresses and the energy information, and reconstructs the speech via the filter bank summation. As results, the coder shows fixed data rate contrary to the existing speech coders based on the non-uniform sampling. Through computer simulation, the usefulness of the proposed technique is confirmed. The signal-to-noise ratio (SNR) performance of the proposed method is comparable to that of the uniform sampled pulse code modulation (PCM) below 20 kbps data rate.

한국인의 영어 음성 코퍼스 설계 및 구축 (Design and Construction of Korean-Spoken English Corpus(K-SEC))

  • 이석재;이숙향;강석근;이용주
    • 대한음성학회지:말소리
    • /
    • 제46호
    • /
    • pp.159-174
    • /
    • 2003
  • K-SEC (Korean-Spoken English Corpus) is a kind of speech database that is being under construction by the authors of this paper This article discusses the needs of the K-SEC from various academic disciplines and industrial circles, and it introduces the characteristics of the K-SEC design, its catalogues and contents of the recorded database, exemplifying what are being considered from both Korean and English languages' phonetics and phonologies. The K-SEC can be marked as a beginning of a parallel speech corpus, and it is suggested that a similar corpus should be enlarged for the future advancements of the experimental phonetics and the speech information technology.

  • PDF

A Robust Non-Speech Rejection Algorithm

  • Ahn, Young-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.10-13
    • /
    • 1998
  • We propose a robust non-speech rejection algorithm using the three types of pitch-related parameters. The robust non-speech rejection algorithm utilizes three kinds of pitch parameters : (1) pitch range, (2) difference of the successive pitch range, and (3) the number of successive pitches satisfying constraints related with the previous two parameters. The acceptance rate of the speech commands was 95% for -2.8dB signal-to-noise ratio (SNR) speech database that consisted of 2440 utterances. The rejection rate of the non-speech sounds was 100% while the acceptance rate of the speech commands was 97% in an office environment.

  • PDF

FIR filtering에 의한 끝점추출에 관한 연구 (A Study on the Endpoint Detection by FIR Filtering)

  • 이창영
    • 음성과학
    • /
    • 제5권1호
    • /
    • pp.81-88
    • /
    • 1999
  • This paper provides a method for speech detection. After first order FIR filtering on the speech signals, we applied the conventional method of endpoint detection which utilizes the energy as the criterion in separating signals from background noise. By FIR filtering, only the Fourier components with large values of [amplitude x frequency] become significant in energy profile. By applying this procedure to the 445-words database constructed from ETRI, we confirmed that the low-amplitude noise and/or the low-frequency noise are separated clearly from the speech signals, thereby enhancing the feasibility of ideal endpoint detections.

  • PDF