• Title/Summary/Keyword: spectrum sensing

Search Result 555, Processing Time 0.033 seconds

A Cooperative Spectrum Sensing and Dynamic Spectrum Decision Methods for Heterogeneous Cognitive Radio Network (이종 인지 라디오 네트워크에서 협력 스펙트럼 센싱 및 동적 스펙트럼 결정 방법)

  • Kim, Nam-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.560-568
    • /
    • 2012
  • Spectrum sensing and spectrum decision are the main functions that cognitive radios (CRs) have to perform in order to get the best available spectrum band for the establishment of a wireless communication. These problems are worsened in the presence of users with different demands and spectrum channels with different properties in a heterogeneous network. The primary objective in this work is to design and simulate a new spectrum decision algorithm for heterogeneous cognitive radio system. To this end, first, we consider all cognitive users are separated into different traffic classes according to their Quality of Service (QoS). The cognitive users within one traffic class perform spectrum sensing in centralized group-based cooperative spectrum sensing system and the users of different traffic classes share the sensing results. Second, we propose a novel use of the Analytic Hierarchy Process (AHP) to optimally select available bands according to user requirements and detected spectrum channel characteristics (SCC). In this paper, utility function is used as spectrum decision algorithm. Simulation results demonstrate that the proposed method shows can effectively select the best available spectrum channels with a low complexity.

Analysis of Effects of Nonideal Channels on the Throughput of CR Systems (인지 무선 시스템에서 전송 오류가 전송 용량에 미치는 영향에 대한 분석)

  • Lee, Sang-Wook;Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.719-726
    • /
    • 2009
  • CR systems performs spectrum sensing operation to detect the appearance of primary users. However, since it is not feasible to do spectrum sensing and data transmission simultaneously, they typically operate alternatively in a time domain. There have been an effort(8) to investigate the optimal spectrum sensing duration for maximum throughput for the scheme with cooperative spectrum sensing. This is based on an assumption that the communication channels between each secondary user and the fusion center are ideal and does not consider the effects of transmission error. Motivated by this, we here model the channels as binary symmetric channels and examined its effect on the maximum throughput and the associated optimal sensing duration. Analysis shows that the performance degradation due to the transmission error is smaller for the case of using the AND fusion rule than for the OR fusion rule.

New Cooperative Spectrum Sensing Scheme using Three Adaptive Thresholds (Cognitive Radio를 위한 새로운 협력 스펙트럼 감지기법 연구)

  • Satrio, Cahyo Tri;Jang, Jaeshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.808-811
    • /
    • 2015
  • Cognitive radio has been proposed as a promising dynamic spectrum allocation paradigm. In cognitive radio, spectrum sensing is a fundamental procedure that enables secondary users (unlicensed) employing unused portion of spectrum of primary users (licensed) without causing harmful interference. However, the performance of single-user spectrum-sensing scheme was limited by fading, noise uncertainty shadowing and hidden node problem. Cooperative spectrum sensing was proposed to mitigate these problem. In this paper, we observe cooperative sensing scheme with energy detection using three adaptive thresholds for local decision, which can mitigate sensing failure problem and improve sensing performance at local node. In cooperative scheme we employed OR rules as decision combining at fusion center. We evaluate our scheme through computer simulation, and the results show that with OR combination rule our scheme can achieve best performance than other schemes.

  • PDF

On the Performance of Cooperative Spectrum Sensing of Cognitive Radio Networks in AWGN and Rayleigh Fading Environments

  • Saad, Wasan Kadhim;Ismail, Mahamod;Nordin, Rosdiadee;El-Saleh, Ayman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1754-1769
    • /
    • 2013
  • For the purpose of enhancing the spectrum efficiency, cognitive radio (CR) technology has been recently proposed as a promising dynamic spectrum allocation paradigm. In CR, spectrum sensing is the key capability of secondary users in a cognitive radio network that aims for reducing the probability of harmful interference with primary users. However, the individual CRs might not be able to carry out reliable detection of the presence of a primary radio due to the impact of channel fading or shadowing. This paper studies the cooperative spectrum sensing scheme as means of optimizing the sensing performance in AWGN and Rayleigh channels. Results generated from simulation provide evidence of the impact of channel condition on the complementary receiver operating characteristic (ROC). Based on the results, it was found that with constant local SNRs at the secondary users, the probability of missed detection ($P_m$) of cooperative spectrum sensing in a cognitive radio network, calculated using a closed form expression, can be significantly minimized. Thus, the paper illustrates that improvement of the detection performance of the CR network can be achieved by establishing a centralized cooperation among neighboring cognitive radio users. Finally, verification of the validity of the fusion schemes utilized for combining the individual CR decisions is provided.

Effects of Correlated Local Spectrum Sensing Decisions on the Throughput of CR Systems (스펙트럼 감지 결정간의 상관 관계가 CR 시스템의 전송 용량에 미치는 영향)

  • Lim, Chang-Heon;Lee, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.87-94
    • /
    • 2010
  • It is widely known that cooperative spectrum sensing in which secondary users scattered in some region collaborate to detect primary users can significantly reduce the performance degradation due to the fading phenomenon. Most of previous works on cooperative spectrum sensing are based on the assumption that the local spectrum sensing decisions of secondary users are statistically independent. However, there can be practically some statistical correlation between the local decisions of any two secondary users in close proximity, which is caused by shadowing effect. In order to evaluate the effect of this correlation on the performance of collaborative spectrum sensing, we assumed that, for the case that a primary user are active in the spectrum of interest, any two local decisions are statistically correlated to each other with some level of constant correlation and independent otherwise, and analyzed the achievable throughput with the degree of correlation varying. The results showed that, as the degree of correlation gets higher, the throughput increases for the case of the AND fusion rule and decreases for the OR fusion rule.

A Study on Spectrum Sensing for WRAN (WRAN을 위한 스펙트럼 센싱에 관한 연구)

  • Oh, Sang-Min;Lim, Jong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • Recently, many frequency sharing technology including CR (Cognitive Radio) technology have been studied actively because of frequency scarcity. For implementing CR systems, spectrum sensing technology plays key role. In IEEE 802.22 WRAN, the first standard aimed at Internet service in a TV channel with CR technology. This paper explained the various spectrum sensing schemes detecting narrowband ATSC signal in the IEEE 802.22 such as Energy detector, Spectral Correlation Sensing scheme, Covariance based Sensing algorithm and analyzed in terms of the probability of misdetection when the probability of false alarm is 10%. Based on simulation results, this paper proposed a duplex sensing scheme based on Energy detector and analyzed the capability of the proposed sensing scheme comparing with each sensing scheme.

  • PDF

Informed Spectrum Discovery in Cognitive Radio Networks using Proactive Out-of-Band Sensing

  • Jembre, Yalew Zelalem;Choi, Young-June;Paul, Rajib;Pak, Wooguil;Li, Zhetao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2212-2230
    • /
    • 2014
  • Cognitive radio (CR) users, known as secondary users (SUs), should avoid interference with primary users (PUs) who own the licensed band, while trying to access it; when the licensed band is unused by the PUs. To detect PUs, spectrum sensing should be performed over in-band channels that are currently in use by SUs. If PUs return to access the band, SUs need to vacate it, disrupting the SUs' communication unless a non-utilized band is discovered. Obtaining a non-utilized band in a short period facilitate seamless communication for SUs and avoid interference on PUs by vacating from the channel immediately. Searching for a non-utilized band can be done through proactive out-of-band (OB) sensing. In this paper, we suggest a proactive OB sensing scheme that minimizes the time required to discover a non-utilized spectrum in order to continue communication. Although, the duration spent on OB sensing reduces the throughput of the CR networks that can be achieved on band being utilized, the lost throughput can be compensated in the new discovered band. We demonstrate that, the effect of our proposed scheme on the throughput owing to OB sensing is insignificant, while exhibiting a very short channel discovery time.

Histogram Bin Number Selection Method Robust to the Variations of Channel Occupancy for Cross Entropy (크로스 엔트로피 기반 스펙트럼 센싱에서 채널 점유 시간 변화에 따른 히스토그램 Bin 개수 선택 기법)

  • Yong, Seulbaro;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Most of the traditional spectrum sensing methods consider only the current detected data sets of Primary User (PU). However previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. Therefore, in the cross entropy spectrum sensing method, relationship of the previous and current spectrum sensing is considered to detect PU signal more effectively. But these cross entropy spectrum sensing methods only consider the ideal system. In other words, PU always occupy the channel during the same period. However, PU can occupy the channel either for a longer or a shorter period than the ideal case in the real system. For this reason, the spectrum sensing performance can be varied. In this paper, we propose the method that can maintain the performance of spectrum sensing in the real system and we confirm the results with the help of simulation.

Throughput of Cognitive Radio Network with Collaborative Spectrum Sensing Using Correlated Local Decisions (상관된 국부 결정을 사용하여 협력 스펙트럼 감지를 하는 인지 무선 네트워크의 전송 용량)

  • Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.642-650
    • /
    • 2010
  • Collaborative spectrum sensing allows secondary users scattered in location to work together to detect the activity of primary users and has been shown to significantly reduce the performance degradation due to fading phenomenon. Most previous works on collaborative spectrum sensing are based on the assumption that local spectrum sensing decisions of secondary users are statistically independent. However, it may not hold in some practical situations with shadowing effect. In this paper, we consider the case that the secondary users are evenly spaced in the form of a linear array and only adjacent secondary users are statistically correlated, and analyze the effect of the statistical correlation on the performance of collaborative spectrum sensing and the throughput of a cognitive radio network. Here we assumed the AND and OR fusion rules for combining the local decisions of secondary users. The analysis showed that the AND fusion rule achieves higher throughput than the OR fusion rule.