• Title/Summary/Keyword: spectrum cognition

Search Result 22, Processing Time 0.016 seconds

Cognitive and other neuropsychological profiles in children with newly diagnosed benign rolandic epilepsy

  • Kwon, Soonhak;Seo, Hye-Eun;Hwang, Su Kyeong
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.10
    • /
    • pp.383-387
    • /
    • 2012
  • Purpose: Although benign rolandic epilepsy (BRE) is a benign condition, it may be associated with a spectrum of behavioral, psychiatric, and cognitive disorders. This study aimed to assess the cognitive and other neuropsychological profiles of children with BRE. Methods: In total, 23 children with BRE were consecutively recruited. All children underwent sleep electroencephalography (EEG) and were assessed on a battery of comprehensive neuropsychological tests including the Korean versions of the Wechsler intelligence scale for children III, frontal executive neuropsychological test, rey complex figure test, Wisconsin card sorting test, attention deficit diagnostic scale, and child behavior checklist scale. Results: The study subjects included 13 boys and 10 girls aged $9.0{\pm}1.6$ years. Our subjects showed an average monthly seizure frequency of $0.9{\pm}0.7$, and a majority of them had focal seizures (70%). The spike index (frequency/min) was $4.1{\pm}5.3$ (right) and $13.1{\pm}15.9$ (left). Of the 23 subjects, 9 showed frequent spikes (>10/min) on the EEG. The subjects had normal cognitive and frontal executive functions, memory, and other neuropsychological sub-domain scores, even though 8 children (35%) showed some evidence of learning difficulties, attention deficits, and aggressive behavior. Conclusion: Our data have limited predictive value; however, these data demonstrate that although BRE appears to be benign at the onset, children with BRE might develop cognitive, behavioral, and other psychiatric disorders during the active phase of epilepsy, and these problems may even outlast the BRE. Therefore, we recommend scrupulous follow-up for children with BRE.

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.