• Title/Summary/Keyword: spectro-microscopy

Search Result 8, Processing Time 0.025 seconds

SPEM & PEEM (Scanning Photoelectron Microscopy & PhotoEmission Electron Microscopy)

  • Sin, Hyeon-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.83-83
    • /
    • 2012
  • 본 강연에서는 방사광 연X-선 분광현미경학(spectro-microscopy) 중에서, 표면에서 방출되는 광전자를 이용하는 SPEM (Scanning Photoelectron Microscopy)과 PEEM (Photoemission Electron Microscopy)을 소개하고자 한다. SPEM은 입사하는 X-선을 작은 크기로 집속하여 특정의 작은 공간에서 광전자분광학(XPS) 데이터를 얻거나 특정 광전자에너지의 공간분포를 얻게 해주며, PEEM은 입사한 X-선에 의해 발생한 광전자를 전자렌즈 원리로 영상을 맺히게 하여 광전자의 발생 분포를 구하게 한다. 이들은 균일하지 아니한 이종의 표면 연구에 매우 유용한 측정기법들이지만, 그 원리 및 구성은 많은 차이점들을 가지고 있다. 예를 들어, SPEM은 시료를 scanning하면서 XPS에 보다 충실한 타입이고 PEEM은 full field imaging 타입으로 표면변화의 동역학 연구에 강점이 있다. 본 강의에서는 이들 각각의 원리, 장점들에 대해서 설명하고, 활용 예를 제시하고자 한다. 활용 분야에 있어서, SPEM의 경우는 포항가속기연구소의 SPEM으로 수행되었던 DMS, graphene, nano-lithography, OLED, 등 반도체 및 나노 소재, 소자에의 활용에 대한 예를 제시할 것이다. PEEM의 경우는 포항가속기연구소의 응용 예와 박막 형태의 magnetic material에 대한 예들을 제시할 것이다.

  • PDF

Photoelectron spectro-microscopy/Scanning photoelectron microscopy (SPEM) (광전자 분광현미경학)

  • Shin, Hyun-Joon
    • Vacuum Magazine
    • /
    • v.3 no.4
    • /
    • pp.8-13
    • /
    • 2016
  • The need of space-resolved x-ray photoelectron spectroscopy (XPS) has developed scanning photoelectron microscopy (SPEM). SPEM provides space-resolved XPS data from a spot of a sample as well as images of specific element, chemical state, valency distribution on the surface of a sample. Based on technical advancement of tight x-ray focusing, sample positioning accuracy, and electron analyzer efficiency, SPEM is now capable of providing ~100 nm space resolution for typical XPS functionality, and SPEM has become actively applied for the investigation of chemical state, valency, and electronic structure on the surface of newly discovered materials, such as graphene layers, dichalcogenide 2D-materials, and heterogenous new functional materials.

Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract

  • Nagajyothi, P.C.;Lee, Seong-Eon;An, Minh;Lee, Kap-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2609-2612
    • /
    • 2012
  • A simple green method was developed for rapid synthesis of silver and gold nanoparticles (AgNPs and AuNPs) has been reported using Lonicera japonica flower extract as a reducing and a capping agent. AgNPs and AuNPs were carried out at $70^{\circ}C$. The successful formation of AgNPs and AuNPs have been confirmed by UV-Vis spectro photometer, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray Analysis (EDAX), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To our knowledge, this is the first report where Lonicera japonica flower was found to be a suitable plant source for the green synthesis of AgNPs and AuNPs.

Electrical, Optical and Structural Properties of Indium Zinc Oxide Top Cathode Grown by Box Cathode Sputtering for Top-emitting OLEDs (박스 캐소드 스퍼터로 성장시킨 전면 발광 OLED용 상부 InZnO 캐소드 박막의 전기적, 광학적, 구조적 특성 연구)

  • Bae Jung-Hyeok;Moon Jong-Min;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.442-449
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) films grown by a box cathode sputtering (BCS) were investigated as a function of oxygen flow ratio. A sheet resistance of $42.6{\Omega}/{\Box}$, average transmittance above 88% in visible range, and root mean spare roughness of $2.7{\AA}$ were obtained even in the IZO layers grown at room temperature. In addition, it is shown that electrical characteristics of the top-emitting organic light emitting diodes (TOLEDs) with the BCS grown-IZO top cathode layer is better than that of TOLEDs with DC sputter grown IZO top cathode, due to absence of plasma damage effect. Furthermore the effects of oxygen flow ratio in IZO films are investigated, based on x-ray photoelectron spectroscopy (XPS), ultra violet/visible (UV/VIS) spectro-meter, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis results.

Determination of the complex refractive index of $Ge_2Sb_2Te_5$ using spectroscopic ellipsometry (분광타원해석법을 이용한 $Ge_2Sb_2Te_5$ 의 복소굴절율 결정)

  • Kim, S. J.;Kim, S. Y.;Seo, H.;Park, J. W.;Chung, T. H.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.445-449
    • /
    • 1997
  • The complex refractive indices of $Ge_2Se_2Te_5$ which show reversible phase change between the crystalline phase and an amorphous one depending upon the annealing process have been determined in the spectral range of 0.7-4.5 eV. The $Ge_2Se_2Te_5$ films were DC sputter deposited on the crystalline silicon substrate. The spectro-ellipsometry data of a thick film were analyzed following the modelling procedure where the quantum mechanical dispersion relation were used for the complex refractive indices of both the cryastalline phase $Ge_2Se_2Te_5$ and and amorphous phase $Ge_2Se_2Te_5$, respectively. On the other hand, with the surface micro-roughness layer whose effective thickness was determined from AFM analysis, the spectro-ellipsometry data were numerically inverted to yield the complex refractive index of $Ge_2Se_2Te_5$ at each wavelength. With these set of complex refractive indices, the reflectance spectra were calculated and those spectra obtained from the numerical inversion showed better agreement with the experimental reflection spectra for both the cryastalline phase and an amorphous phase. Finally, the thin $Ge_2Se_2Te_5$ film which has the optimum thickness of 26 nm as the medium for optical recording was also analyzed and the quantitative result of the film thickness and the surface microroughness has been reported.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Choi, Jong-Geun;Meng, Ze-Da
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.535-542
    • /
    • 2010
  • In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.