• Title/Summary/Keyword: spectral study

Search Result 2,799, Processing Time 0.03 seconds

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

One-Pot Synthesis of Alkyl-Terminated Silicon Nanoparticles by Solution Reduction (표면 알킬기를 갖는 실리콘 나노입자의 One-Pot 용액환원 합성)

  • Yoon, Taegyun;Cho, Mikyung;Sun, Yang-Kook;Lee, Jung Kyoo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.577-581
    • /
    • 2011
  • Silicon nanoparticles have attracted a great deal of scientific interests due to its intense photoluminescence in the visible spectral region and its potential applications in biological fluorescence maker, RGB (red, green, blue) display, photonics and photovoltaics etc. Practical applications making use of optical and physicochemical properties of Si nanoparticles requires an efficient synthetic method which allows easy modulation of their size, size distribution as well as surface functionalities etc. In this study, a one-pot solution reduction scheme is attempted to prepare alkyl-terminated Si nanoparticles (<10 nm) with Si precursors, (Octyl)$SiCl_3$ or mixture of (Octyl)$SiCl_3$ and $SiCl_4$, containing alkyl-groups using Na(naphthalide) as reducing agent. The surface capping of Si nanoparticles with octyl-groups as well as Si nanoparticle formation was achieved in one-pot reaction. The hexane soluble Si nanoparticles with octyl-termination were in the range of 2-10 nm by TEM and some oxide groups (Si-O-Si) was present on the surface by EDS/FTIR analyses. The optical properties of Si nanoparticles measured by UV-vis and PL evidenced that photoluminescent Si nanoparticles with alkyl-termination was successfully synthesized by solution reduction of alkyl-containing Si precursors in one-pot reaction.

Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별)

  • Hur, Suel Hye;Kim, Suk Weon;Min, Byung Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • This study aimed to establish a rapid system for discriminating the cultivation origins and cultivars of dry persimmons, using metabolite fingerprinting by Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis. Whole-cell extracts from the sepals of four Korean cultivars and two different Chinese dry persimmons were subjected to FT-IR spectroscopy. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the FT-IR spectral data successfully discriminated six dry persimmons into two groups depending on their cultivation origins. Principal component loading values showed that the 1750-1420 and $1190-950cm^{-1}$ regions of the FT-IR spectra were significantly important for the discrimination of cultivation origins. The accuracy of prediction of the cultivation origins and cultivars by PLS regression was 100% (p<0.01) and 85.9% (p<0.05), respectively. These results clearly show that metabolic fingerprinting of FT-IR spectra can be applied for rapid discrimination of the cultivation origins and cultivars of commercial dry persimmons.

Analysis on the Optical Absorption Property of Sea Waters Dominated by Alexandrium affine in Coastal Waters off Tongyeong, 2017 (2017년 통영 해역에서의 Alexandrium affine 우점 해수의 흡광 특성)

  • Kim, Wonkook;Han, Tai-Hyun;Jung, Seung Won;Kang, Donhyug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.563-570
    • /
    • 2019
  • Red tide has caused massive fish kills in Korean coastal waters with devastating economic loss in the aquaculture industry since 1995. Remote sensing technique has shown to be effective for the detection of red tide in wide areas, where the absorption property of red tide water plays a central role in understanding the red tide reflectance. This study analyzed the optical absorption property of sea waters dominated by the dinoflagellate specie of Alexandirum affine, off the Tongyeong area in August, 2017. Water samples collected from 20 stations in the ship-based campaign were measured for absorption by pigment, suspended solid, and dissolved organic matter, with the corresponding water quality variables such as chlorophyll concentration and total suspended solid. The analysis showed that Alexandrium-dominated water exhibits strong absorption in the spectral range below 400 nm unlike that of diatom-dominated waters, and greater fluctuations in the range of 400 nm - 500 nm. The packaging effect in pigment absorption was stronger in Alexandrium-dominated waters, and the exponent in the absorption by detritus and gelbstoff is disparate for diatom and Alexandrium. In the model for the detritus and gelbstoff absorption (adg(λ)=adg0)e-s(λ-λ0)), the optimal exponent coefficient(s) for the Alexandrium was close to 0.01 rather than to 0.015, which was commonly use for modelling diatom waters.

Prediction of the Land-surface Environment Changes in the Anmyeon-do Using Fuzzy Logic Operation (퍼지논리연산을 이용한 안면도 지표환경 변화 예측)

  • 장동호;지광훈;이현영
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.4
    • /
    • pp.371-384
    • /
    • 2002
  • It is very important to predict the environmental changes in the land-surface as a way of prevention of sustainable nature. This study investigated the difference between the predicted and actual data of Anmyeon-do from 1981 to 2000 through a fuzzy logic operation using multi-spectral image. According to literature survey, maps, and ground truth data, the types of land-use have changed due primarily to shore reclamation or wild land and grassland fostering before the eighties. After the mid-eighties, however, a number of private residents and commercial stores quickly have spreaded throughout beach resorts and quasi-agricultural and forest areas. Moreover, shore and community regions were severely damaged in the nineties with increased farmland, due to the development of tour places and expansion of city area. The predicted result of the environmental changes in the land-surface using the fuzzy logic operation was almost similar to the state of Anmyeon-do obtained through the satellite image. Particularly, the flat lands near the shore was predicted to change slightly. This area is largely under development, thereby raising concerns on the shore environment. Thus, this method is applicable to conducting research on the change in the land-surface.

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

Prediction of the Digestibility and Energy Value of Corn Silage by Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 옥수수 사일리지의 소화율 및 에너지 평가)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Kim Su-Gon;Ha Jong-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • This study was carried out to explore the accuracy of Near Infrared Reflectance Spectroscopy (NIRS) fer the prediction of digestibility and energy value of corn silages. The spectral data were regressed against a range of digestibility and energy parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with first and second order derivatization, with scatter correction procedure(SNV-Detrend) to reduce the effect of extraneous noise. Calibration models for NIRS measurements gave multivariate correlation coefficients of determination$(R^2)$ and standard errors of cross validation of 0.92(SECV 1.73), 0.91(SECV 1.13) and 0.93(SECV 1.74) for in vitro dry matter digestibility(IVDMD), in vitro true digestibility(IVTD), and cellulase dry matter digestibility(CDMD), respectively. The standard error of prediction(SEP) and the multiple correlation coefficient of validation$(R^2v)$ on the validation set(n=39) was used in comparing the prediction accuracy. The SEP value was 0.30(TDN), 0.01(NEL), and 0.01(ME). The relative ability of NIRS to predict digestibility and energy value was very good for CDMD, total digestible nutrients(TDN), net energy fer lactation(NEL) and metabolizable energy(ME). This paper shows the potential of NIRS to predict the digestibility and energy value of con silage as a routine method in feeding programmes and for giving advice to farmers.

Evaluating Applicability of Photochemical Reflectance Index using Airborne-Based Hyperspectral Image: With Shadow Effect and Spectral Bands Characteristics (항공 초분광 영상을 이용한 광화학반사지수 이용 가능성 평가: 그림자 영향 및 대체 밴드를 중심으로)

  • Ryu, Jae-Hyun;Shin, Jung Il;Lee, Chang Suk;Hong, Sungwook;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.507-519
    • /
    • 2017
  • The applications of NDVI (Normalized Difference Vegetation Index) as a vegetation index has been widely used to understand vegetation biomass and physiological activities. However, NDVI is not suitable way for monitoring vegetation stress because it is less sensitive to change in physiological state than biomass. PRI (Photochemical Reflectance Index) is well developed to present physiological activities of vegetation, particularly high-light-stress condition, and it has been adopted in several satellites to be launched in the future. Thus, the understanding of PRI performance and the development of analysis method will be necessary. This study aims to interpret the characteristics of light-stress-sensitive PRI in shadow areas and to evaluate the PRI calculated by other wavelengths (i.e., 488.9 nm, 553.6 nm, 646.9 nm, and 668.4 nm) instead of 570 nm that used in original PRI. Using airborne-based hyperspectral image, we found that PRI values were increased in shadow detection due to the reduction of high light induced physiological stress. However, the qualities of both PRI and NDVI data were dramatically decreased when the shadow index (SI) exceeded the threshold (SI<25). In addition, the PRI calculated using by 553.6 nm had best correlation with original PRI. This relationship was improved by multiple regression analysis including reflectances of RED and NIR. These results will be helpful to the understanding of physiological meaning on the application of PRI.