• Title/Summary/Keyword: spectral shape

Search Result 238, Processing Time 0.029 seconds

A Study of Atmospheric-pressure Dielectric Barrier Discharge (DBD) Volume Plasma Jet Generation According to the Flow Rate (유량에 따른 대기압 유전체 전위장벽방전(DBD) 플라즈마 젯 발생에 관한 연구)

  • Byeong-Ho Jeong
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.83-92
    • /
    • 2023
  • The bullet shape of the plasma jet using the atmospheric-pressure dielectric barrier discharge method changes depending on the applied fluid rate and the intensity of the electric field. This changes appear as a difference in spectral distribution due to a difference in density of the DBD plasma jet. It is an important factor in utilizing the plasma device that difference between the occurrence of active species and the intensity through the analysis of the spectrum of the generated plasma jet. In this paper, a plasma jet generator of the atmospheric pressure volume DBD method using Ar gas was make a prototype in accordance with the proposed design method. The characteristics jet fluid rate analysis of Ar gas was accomplished through simulation to determine the dependence of flow rate for the generation of plasma jets, and the characteristics of plasma jets using spectrometers were analyzed in the prototype system to generate optimal plasma jet bullet shapes through MFC flow control. Through the design method of the proposed system, the method of establishing the optimal plasma jet characteristics in the device and the results of active species on the EOS were verified.

Mineral Identification and Field Application by Short Wave Infrared (SWIR) Spectroscopy (단파장적외선 분광분석법을 이용한 광물동정과 현장적용성)

  • Kim, Chang Seong;Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The analytical conditions including surface state, moisture effect, and device condition were investigated for applying Short Wave Infrared(SWIR) spectroscopy to the field survey. Among the three surface state of samples (exposed surface, cutting face and powder), both spectra from the exposed surface and cutting face are almost identical whereas spectral variation was detected in powder sample. Over 24-hours-dryring of the wet sample at room temperature, the samples show a similar spectrum with that of dry condition. The result suggests that outcrop samples mighty be dried for 24 ~ 48 hours depending on the wetness of outcrop. The bright minerals could produce stable spectra with 10 times measurements as default value of the device under SWIR spectroscopy but the dark minerals would require about 10 seconds, which corresponds to 100 times measurements to get the reliable spectra. The position and shape 2,160 ~ 2,330 nm and/or other spectral features of hydrothermal alteration minerals by SWIR spectroscopy could be used for a classification of hydrothermal alteration zone in the field. Absorption peaks in 2,160 ~ 2180 nm are useful for identifying (advanced) argillic zone by spectral characteristics of kaoline, dickite, pyrophyllite, and alunite. Absorption peaks in 2,180 ~ 2,230 nm are able to define muscovite, sericite, and smectite, which are key alteration minerals in phyllic zone. Absorption peaks in 2,230 ~ 2,270 nm can be used to recognize prophylitic zone where chlorite and epidote occur. Absorption peaks of other principle minerals such as talc, serpentine, amphibole, and carbonate group are mainly detected within the wave length of 2,270 ~ 2,330 nm. This result indicates that the spectra of these minerals need to be carefully interpreted.

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF

Uniform Hazard Spectrum for Seismic Design of Fire Protection Facilities (소방시설의 내진설계를 위한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Since the Northridge earthquake (1994) and Kobe earthquake (1995), the concept of performance-based design has been actively introduced to design major structures and buildings. Recently, the seismic design code was established for fire protection facilities. Therefore, the important fire protection facilities should be designed and constructed according to the seismic design code. Accordingly, uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level, such as operational, immediate occupancy, life safety, and collapse prevention, are required for performance-based design. Using the method of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectra for 5 major cities in Korea with a recurrence period of 500, 1,000, and 2,500 years corresponding to frequencies of (0.5, 1.0, 2.0, 5.0, 10.0)Hz and PGA, were analyzed. The expert panel was comprised of 10 members in seismology and tectonics. The ground motion prediction equations and several seismo tectonic models suggested by 10 expert panel members in seismology and tectonics were used as the input data for uniform hazard spectrum analysis. According to sensitivity analysis, the parameter of spectral ground motion prediction equations has a greater impact on the seismic hazard than seismotectonic models. The resulting uniform hazard spectra showed maximum values of the seismic hazard at a frequency of 10Hz and also showed the shape characteristics, which are similar to previous studies and related technical guides for nuclear facilities.

Development of Software Correlator for KJJVC (한일공동VLBI상관기를 위한 소프트웨어 상관기의 개발)

  • Yeom, J.H.;Oh, S.J.;Roh, D.G.;Kang, Y.W.;Park, S.Y.;Lee, C.H.;Chung, H.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.567-588
    • /
    • 2009
  • Korea-Japan Joint VLBI Correlator (KJJVC) is being developed by collaborating KASI (Korea Astronomy and Space Science Institute), Korea, and NAOJ(National Observatory of Japan), Japan. In early 2010, KJJVC will work in normal operation. In this study, we developed the software correlator which is based on VCS (VLBI Correlation Subsystem) hardware specification as the core component of KJJVC. The main specification of software correlator is 8 Gbps, 8192 output channels, and 262,144-points FFT (Fast Fourier Transform) function same as VCS. And the functional algorithm which is same as specification of VCS and arithmetic register are adopted in this software correlator. To verify the performance of developed software correlator, the correlation experiments were carried out using the spectral line and continuum sources which were observed by VERA (VLBI Exploration of Radio Astrometry), NAOJ. And the experimental results were compared to the output of Mitaka FX correlator by referring spectrum shape, phase rate, and fringe detection and so on. Through the experimental results, we confirmed that the correlation results of software correlator are the same as Mitaka FX correlator and verified the effectiveness of it. In future, we expect that the developed software correlator will be the possible software correlator of KVN (Korean VLBI Network) with KJJVC by introducing the correlation post-processing and modifying the user interface as like GUI (Graphic User Interface).

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.

Cloning and Characterization of Monofunctional Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1

  • Lee, Dong-Heon;Oh, Duck-Chul;Oh, You-Sung;Malinverni, Juliana C.;Kukor, Jerome J.;Kahng, Hyung-Yeel
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1460-1468
    • /
    • 2007
  • In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from $20^{\circ}C$ to $60^{\circ}C$C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's $K_m$ value and $V_{max}$ of the catalase for $H_2O_2$ were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of $A_{406}$ to $A_{280}$ for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1 in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.

Transmittance Characteristics of Fishing Lamp in the Anchovy Scoop Fishery (멸치초망어업용 집어등 광력의 수중 투과특성)

  • 박성욱;배봉성;안희춘;서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Anchovy scoop nets, a kind of lift net have been used in the coastal area of Cheju and South sea of Korea. An incandescent lamp(AC 100V, 1kW) is being used as a fishing lamp for gathering anchovy. Fishing lamp was installed at 1m ahead of the prow and 1.5m higher than the water surface. The fishing lamp let fish school rise to the water surface and attract to bag net. Accordingly, a successful anchovy catching depends on controling of fishing lamp. On the study, the distribution of spectral irradiance illumination of incandescent lamp(1kw) and the irradiance efficiency of reflection plate were analyzed and discussed to investigate the ability of fishing lamp which can attract anchovy school effectively. The results obtained are summarized as follows : 1. Around 180% of irradiance efficiency of incandescent lamp was increased by using the reflection plate. The light of lamp was radiated into water with circular shape. 2. The irradiance illumination of incandescent lamp in air was a maximum in wave length of 994nm but it was 690nm at 0.5m and 1.0m of water depth. 3. The relationship between water depth(x) and water illumination(y) of vertical light is represented as follows : y=146.03e supper(-0.37x) 4. The light of incandescent lamp(1kW) pass through much better into vertical direction than horizontal but it was estimated that the light was not able to reach depth of 20m.

  • PDF

Investigation of the Acoustic Performance of Music Halls Using Measured Radiation Characteristics of the Korean Traditional Musical Instruments (국악기의 음향방사특성에 따른 국악당의 음향성능조사)

  • Haan Chan-Hoon;Lee Wangu;Jeong Cheol-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.469-480
    • /
    • 2005
  • There have been always some difficulties in target setting and conditioning of acoustic performances or the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. As the 2nd experiment succeeding the previous study[1], the radiation characteristics of eight typical Korean traditional musical sources were investigated if precision. The selected musical sources were Geomungo, Haegeum (string), Piri, Taepyeongso (woodwind), Buk, Kwaengguari, Jing (drum), and male Pansori Chang (vocal Performance). The results show that the directivity pattern of each instrument is different and has their own directivity characteristics. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. In order to investigate the acoustical characteristics of the instruments depending on the spatial variation four different shapes of halls were introduced including rectangular, fan. horse-shoe and geometrical shapes. Room acoustical parameters such as RT, SPL, C80, LF, STI were calculated at each type or hall. As the results, It was found that the rectangular hall has the most high clarity. lateral energy and STI values among low shapes of halls. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.