• Title/Summary/Keyword: spectral peak

Search Result 509, Processing Time 0.031 seconds

Acoustic Characteristics of Watermelon for Internal Quality Evaluation (내부품질 판정을 위한 수박의 음파특성)

  • 최동수;최규홍;이강진;이영희;김만수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • The objectives of the study were to analyze the acoustic characteristics related to the internal quality factors of watermelon(Citrulus Vulgaris Schrad). Among the various internal quality factors, only four factors such as ripeness, inside cavity, yellow belt and blood flesh were considered in this study. Relationships between the internal quality factors, the day after fruit set and the day after harvest were also investigated. Test apparatus was the same as the apparatus described in the previous study(Choi et at., 2000). The selected sample was divided into four groups; 69 samples used for ripeness tests 56 samples for ripeness test along the day after fruit set and for yellow belt detection, 60 samples for ripeness along the day after harvest 44 samples fur blood flesh detection. It was shown that the first peak frequencies shifted to the lower range and the energy ratios of the bandwidths between 0∼550 Hz to the bandwidths between 850∼2500 Hz increased as the day after fruit set elapsed. Since the acoustic responses of the watermelon such as frequency and magnitude began to change from 10 days after harvest, the storage period of watermelon in a normal temperature condition seemed to be approximately 10 days after harvest. The ratios of the first peak amplitude to the maximum peak amplitude fur the sound watermelon showed the higher value than that fur watermelon with cavity inside, and the separation between the sound and cavity inside could be accomplished by the ratio value of 0.25. The energy ratios (0∼550 Hz/850∼2,500 Hz) for the watermelon with cavity inside showed the higher value than 2.3. The frequency characteristics of the yellow belt watermelon appeared mostly in the range of 600∼900 Hz frequencies. The yellow belt watermelon showing the energy spectral density function at this frequency range to be over 70 seemed to be not a marketable commodity, The energy ratios(0∼550 Hz/850∼2,500 Hz) for the blood flesh watermelon showed the higher value than 3.5.

Alteration Analysis of Normal Human Brain Metabolites with Variation of SENSE and NEX in 3T Multi Voxel Spectroscopy (3T Multi Voxel Spectroscopy에서 SENSE와 NEX 변화에 따른 정상인 뇌 대사물질 변화 분석)

  • Seong, Yeol-Hun;Rhim, Jae-Dong;Lee, Jae-Hyun;Cho, Sung-Bong;Woo, Dong-Chul;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.256-262
    • /
    • 2008
  • To evaluate the metabolic changes in normal adult brains due to alterations SENSE and NEX (number of excitation) by multi voxel MR Spectroscopy at 3.0 Tesla. The study group was composed of normal volunteers (5 men and 8 women) with a mean ($\pm$ standard deviation) age of 41 (${\pm}11.65$). Their ages ranged from 28 to 61 years. MR Spectroscopy was performed with a 3.0T Achieva Release Version 2.0 (Philips Medical System-Netherlands). The 8 channel head coil was employed for MRS acquisition. The 13 volunteers underwent multi voxel spectroscopy (MVS) and single voxel spectroscopy (SVS) on the thalamus area with normally gray matter. Spectral parameters were as follows: 15 mm of thickness; 230 mm of FOV (field of view); 2000 msecs of repetition time (TR); 288 msecs of echo time (TE); $110{\times}110$ mm of VOI (view of interest); $15{\times}15{\times}15$ mm of voxel size. Multi voxel spectral parameters were made using specially in alteration of SENSE factor (1~3) and 1~2 of NEX. All MRS data were processed by the jMRUI 3.0 Version. There was no significant difference in NAA/Cr and Cho/Cr ratio between MVS and SVS likewise the previous results by Ross and coworkers in 1994. In addition, despite the alterations of SENSE factor and NEX in MVS, the metabolite ratios were not changed (F-value : 1.37, D.F : 3, P-value : 0.262). However, line-width of NAA peak in MVS was 3 times bigger than that in SVS. In the present study, we demonstrated that the alterations of SENSE factor and NEX were not critically affective to the result of metabolic ratios in the normal brain tissue.

  • PDF

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

A Study on the Characteristics of Summer Water Temperature Fluctuations by Spectral Analysis in Coast of Korea in 2016 (스펙트럼 분석을 통한 2016년 하계 한국연안의 수온변동 특성에 관한 연구)

  • Seo, Ho-San;Jeong, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.186-194
    • /
    • 2020
  • In this study, spectral analysis was conducted to identify environmental factors af ecting short-term changes in water temperature in the East, West and South coasts of Korea. The data used in the spectrum analysis is the 2016 summer water temperature, air temperature, tide level and wind data provided by Korea Hydrographic & Oceanographic Agency. In power spectrum results, peaks of water temperature and tide level were observed at same periods in West Sea (Incheon, Pyeungteak, Gunsan and Mokpo) and South Sea (Wando, Goheung, Yeosu, Tongyeong and Masan) where mean tidal range was more than 100 cm. On the other hand, periodicity of water temperature did not appear in East Sea and Busan where the mean tidal range was small. Coherence analysis showed that water temperature was highly correlated with tide in West Sea and three stations(Wando, Goheung and Tongyeong) of South Sea. Especially, correlation between water temperature and tide level in Wando and Tongyeong presented 0.96 at semi-diurnal period. Water temperature in Yeosu seems to have influenced by tide and inflow of fresh water. In Masan, water temperature is influenced by south wind, tide and inflow of fresh water. In East Sea, influence of tide on water temperature is small due to current and small tidal range. As a result of comparing the time series graph, stations where the correlation between water temperature and tide is high show that relatively cold water was inputted at flood tide and flow out at ebb tide. short-term variation of water temperature was affected by tide, but long-term variation over a month was affected by air temperature.

Metabolic Changes in Patients with Parkinson's Disease after Stereotactic Neurosurgery by Follow-up 1H MR Spectroscopy

  • Choe, Bo-Young;Baik, Hyun-Man;Chun, Shin-Soo;Son, Byung-Chul;Kim, Moon-Chan;Kim, Bum-Soo;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • Authors investigated neuronal changes of local cellular metabolism in the cerebral lesions of Parkinsonian symptomatic side between before and after stereotactic neurosurgery by follow-up 1H magnetic resonance spectroscopy (MRS). Patients with Parkinson's disease (PD) (n = 15) and age-matched normal controls (n = 15) underwen MRS examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2${\times}$2${\times}$2 ㎤ (8ml) volume of interest in the regions of substantia nigra, thalamus, and lentiform nucleus. Spectral parameters were 20 ms TE, 2000 ms TR, 128 averages,2500 Hz spectral width, and 2048 data points. Raw data were processed by the SAGE data analysis package (GE Medical Systems). Peak areas of N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum (Glx) of glutamate and GABA were calculated by means of fitting the spectrum to a summation of Lorentzian curves using Marquardt algorithm. After blindly processed, we evaluated neuronal alterations of observable metabolite ratios between before and after stereotactic neurosurgery using Pearson product-moment analysis (SPSS, Ver. 6.0). A significant reduction of NAA/Cho ratio was observed in the cerebral lesion in substantia nigra of PD patient related to the symptomatic side after neurosurgery (P : 0.03). In thalamus, NAA/Cho ratio was also significantly decreased in the cerebral lesion including the electrode-surgical region (P : 0.03). A significant reduction of NAA/Cho ratio in lentiform nucleus was not oberved, but tended toward significant reduction after neurosurgery (P = 0.08). In particular, remarkable lactate signal was noted from the surgical thalamic lesions of 6 among 8 patients and internal segments of globus pallidus of 6 among 7 patients, respectively. Significant metabolic alterations of NAA/Cho ratio might reflect functional changes of neuropathological processes in the lesion of substantia nigra, thalamus, and lentiform nucleus, and could be a valuable finding fur evaluation of Parkinson's disease after neurosurgery. Increase of lactate signals, being remarkable in surgical lesions, could be consistent with a common consequence of neurosurgical necrosis. Thus, IH MRS could be a useful modality to evaluate the diagnostic and prognostic implications fur Parkinsons disease after functional neurosurgery.

  • PDF

A Study on the Spectral Information and Reflectance Characteristic of Levee Crack (제방 균열의 분광정보 및 반사율 특성에 관한 연구)

  • Kim, Jong-Tae;Lee, Chang-Hun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.17-24
    • /
    • 2020
  • This study examined the spectral information and reflectance of cracks of an embankment with drone-based hyperspectral imagery for crack detection. A Nano-Hyperspec mounted on a drone was used as a sensor, and hyperspectral videos of different intensities of illumination of the cracks on the embankment located in the downstream of Andong-Dam were obtained. An analysis of the data value of the illumination and peak data-value, the coefficients of determination were calculated to be 0.9864 of the uncracked areas and 0.9851 of the cracked area. The reflectance of each area showed a similar value and pattern, regardless of the intensity of illumination. This result may have occurred because the reference values of the white reference as the calculation criteria of reflectance varied according to the intensity of illumination. The reflectance at the cracked area was 5.65% lower in visible light and 4.58% lower in near-infrared light than that at the uncracked area. The detection of cracks may offer more precise results in further studies when the gimbal direction and camera angles of the drone are calibrated. Because hyperspectral imagery enables the detection of crack depths and types of clay minerals, which are difficult to identify in general RGB imagery, it can serve as a preemptive measure for evaluating the embankment stability.

A Quantitative Study for Hydrothermal Alteration Zones using Short Wavelength Infrared Spectrometry (단파장적외선 분광분석법을 이용한 열수변질대 정량화 연구)

  • Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Advanced argillic, argillic, and phyllic zones are the most important alteration patterns to predict the hidden ore body during exploration of hydrothermal deposits. We examined the quantitative relationship between the spectral absorption characteristics and the mineral content of the synthetic mixtures such as alunite-kaolinite and illite-kaolinite using short wavelength infrared (SWIR) spectroscopy. In the alunite-kaolinite mixtures, the spectral absorption characteristics of the alunite was highly correlated with the Hull quotient reflectance(0.99) and the kaolinite had the highest correlation with the Gaussian peak(0.92). Illite-kaolinite mixtures are essential for Gaussian deconvolution because of the overlap of absorption region. Illite and kaolinite mixtures indicate the high correlation of 0.93 and 0.98, respectively. The error ranges in the alunite-kaolinite(8%) and illite-kaolinite mixtures(5%) derived from SWIR were smaller than the ones(29% and 26%) obtained from X-ray diffraction(Rietveld) analysis. These results show that SWIR spectroscopic analysis is more reliable than XRD Rietveld analysis in terms of quantification of allowed minerals.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Differentiation of Malignant and Benign Cervical Lymph Nodes with Color and Pulsed Doppler Ultrasonography (색채 및 펄스 도플러 초음파를 이용한 경부 림프절의 양성과 악성의 감별)

  • Lee Kang-Dae;Lee Bong-Hee;Lee Yun-Woo;Lee Hwan-Ho;Ahn Kyong-Mo;Lee Young-Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Objectives: The clinical efficacy of the color and pulsed Doppler ultrasound with spectral waveform analysis for differentiation of malignant from benign cervical lymphadenopathy was prospectively evaluated in cervical lymphadenopathy. Materials and Methods: Color and pulsed Doppler ultrasound examination was prospectively performed in 32 cervical lymph nodes in 28 patients. These 10 nodes from 10 patients were malignant and 22 nodes from 18 patients were benign, proved by operation, biopsy, and follow-up examination. Another 12 lymph nodes from 12 normal volunteers were evaluated as control group. The peak systolic velocity (PSV), minimal diastolic velocity (MDV) , and resistive indexes (RI) of arterial flows within the 32 lymph nodes were assessed to differentiate the malignant from benign nodes with pulsed Doppler ultrasonography. The results were qualitified with one-way ANOVA and Bonferroni method of multiple comparison. Results: The mean values of PSV of malignant, benign, and control nodes were 38.2(10.1-134)cm/sec, 23.3(9-38.5) cm/sec and 11.8(6.7-18.1) cm/sec, respectively. The mean values of MDV of them were 0.9(-7.5-10.7)cm/sec, 9.7(2.9-18.6)cm/sec and 6.5(3.7-9.3)cm/sec, respectively. However, there was no statistical significance in differentiation of malignant from benign nodes with PSV and MDV. The mean values of RI of malignant, benign, and control nodes were 0.99(0.80-1.30), 0.59(0.46-0.77) and 0.45(0.38-0.50), respectively. RI value of 0.8 is suggestive value for discrimination of malignant from benign lymphadenopathy during examination of color Doppler ultrasound of cervical lymphadenopathy. Conclusion: Color and pulsed Doppler ultrasound examination with spectral waveform analysis may be quite helpful in the differentiation between benign and malignant alterations of cervical lymph nodes.

  • PDF