• Title/Summary/Keyword: spectral methods

Search Result 1,062, Processing Time 0.026 seconds

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

Effects of Acupuncture Stimulation on the Radial artery's Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

  • Shin, Jae-Young;Ku, Boncho;Kim, Tae-Hun;Bae, Jang Han;Jun, Min-Ho;Lee, Jun-Hwan;Kim, Jaeuk U.
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2016
  • Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery's pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz ($SE_{10-30Hz}$) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University's Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number: This trial was registered with the Clinical Research Information Service (CRIS) at the Korea National Institute of Health (NIH), Republic of Korea (KCT0001663), which is a registry in the World Health Organization's (WHO's) Registry Network.

Detection of Gastric Contraction in Electrogastrography: Spectrum Analysis and Vector Analysis (위전도에서의 위수축 측정방법 : 주파수영역분석 및 벡터분석)

  • Kim, In-Young;Han, Wan-Taek
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.273-283
    • /
    • 1997
  • Electrogastrography(EGG), the cutaneous recording of the myoelectrical activity of the stomach using surface electrodes, is attactive due to its non-invasiveness. Despite many attempts made over the decades, analysis of surface EGG has not led to identification of contraction-related electrical response activity of the stomach that would help the clinician to diagnose motility disorders of the stomach. We propose feasible methods to detect the gastric contraction by spectrum analysis and vector analysis of the surface EGG signal. A running spectral analysis(RSA) based on the fast Fourier transform (FFT) was applied to the filtered EGG signal. The powers of dominant frequency and its harmonics were compared with gastric contraction signals such as the strain gauge signal from the gastric serosa in dog or the antropyloric pressure in human. And we also carried out vector analysis of the filtered EGG signals obtained from three paired electrodes. The amplitude and direction of the calculated EGG vector were analyzed and compared with the gastric contraction signals. From the spectrum analysis, we found that the increase of the power of the first harmonic of the dominant frequency was highly correlated with the gastric contraction. And from the vector analysis of the EGG signal, we found a typical change of the amplitude and direction of the EGG vector, which can indicate occurrences of the gastric contraction.

  • PDF

Development of Data Acquisition System for Quantification of Autonomic Nervous System Activity and It's Clinical Use (자율신경계의 활성도 측정을 위한 Data Acquisition System의 개발 및 임상응용)

  • Shin, Dong-Gu;Park, Jong-Sun;Kim, Young-Jo;Shim, Bong-Sup;Lee, Sang-Hak;Lee, Jun-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Background: Power spectrum analysis method is a powerful noninvasive tool for quantifying autonomic nervous system activity. In this paper, we developed a data acquistion system for estimating the activity of the autonomic nervous system by the analysis of heart rate and respiratory rate variability using power spectrum analysis. Materials and methods: For the detection of QRS peak and measurement of respiratory rate from patient's ECG, we used low-pass filter and impedence method respectively. This system adopt an isolated power for patient's safety. In this system, two output signals can be obtained: R-R interval heart rate) and respiration rate time series. Experimental ranges are 30-240 BPM for ECG and 15-80 BPM for respiration. Results: The system can acquire two signals accurately both in the experimental test using simulator and in real clinical setting. Conclusion: The system developed in this paper is efficient for the acquisition of heart rate and respiration signals. This system will play a role in research area for improving our understanding of the pathophysiologic involvement of the autonomic nervous system in various disease states.

  • PDF

Acoustic Analysis and Auditory-Perceptual Assessment for Diagnosis of Functional Dysphonia (기능성 음성장애의 진단을 위한 음향학적, 청지각적 평가)

  • Kim, Geun-Hyo;Lee, Yeon-Yoo;Bae, In-Ho;Lee, Jae-Seok;Lee, Chang-Yoon;Park, Hee-June;Lee, Byung-Joo;Kwon, Soon-Bok
    • Journal of Clinical Otolaryngology Head and Neck Surgery
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2018
  • Background and Objectives : The purpose of this study was to compare the measured values of acoustic and auditory perceptual assessments between normal and functional dysphonia (FD) groups. Materials and Methods : 102 subjects with FD and 59 normal voice groups were participated in this study. Mid-vowel portion of the sustained vowel /a/ and two sentences of 'Sanchaek' were edited, concatenated, and analyzed by Praat script. And then auditory-perceptual (AP) rating was completed by three listeners. Results : The FD group showed higher acoustic voice quality index version 2.02 and version 3.01 (AVQIv2 and AVQIv3), slope, Hammarberg index (HAM), grade (G) and overall severity (OS), values than normal group. Additionally, smoothed cepstral peak prominence in Praat (PraatCPPS), tilt, low-to high spectral band energies (L/H ratio), long-term average spectrum (LTAS) in FD group were lower than normal voice group. And the correlation among measured values ranged from -0.250 to 0.960. In ROC curve analysis, cutoff values of AVQIv2, AVQIv3, PraatCPPS, slope, tilt, L/H ratio, HAM, and LTAS were 3.270, 2.013, 13.838, -22.286, -9.754, 369.043, 27.912, and 34.523, respectively, and the AUC of each analysis was over .890 in AVQIv2, AVQIv3, and PraatCPPS, over 0.731 in HAM, tilt, and slope, over 0.605 in LTAS and L/H ratio. Conclusions : In conclusion, AVQI and CPPS showed the highest predictive power for distinguishing between normal and FD groups. Acoustic analyses and AP rating as noninvasive examination can reinforce the screening capability of FD and help to establish efficient diagnosis and treatment process plan for FD.

Prediction of Internal Quality for Cherry Tomato using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 방울토마토 내부품질 인자 예측)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Kim, Young-Sik
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.324-331
    • /
    • 2011
  • Hyperspectral reflectance imaging technology was used to predict internal quality of cherry tomatoes with the spectral range of 400-1000 nm. Partial least square (PLS) regression method was used to predict firmness, sugar content, and acid content. The PLS models were developed with several preprocessing methods, such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC), and derivative of Savitzky Golay. The performance of the prediction models were investigated to find the best combination of the preprocessing and PLS models. The coefficients of determination ($R^{2}_{p}$) and standard errors of prediction (SEP) for the prediction of firmness, sugar content, and acid content of cherry tomatoes from green to red ripening stages were 0.876 and 1.875kgf with mean of normalization, 0.823 and $0.388^{\circ}Bx$ with maximum of normalization, and 0.620 and 0.208% with maximum of normalization, respectively.

Investigation of USGS Short-Wave Infrared Databases and Comparison with Domestic Cases - Focusing on the Availability for the Mineralogical Analyses and an Application on the Domestic Illite - (USGS 단파장 적외선 데이터베이스 분석 및 국내 사례와 비교: 광물학적 활용도 고찰 및 국내 산출 일라이트로의 적용 사례)

  • Chang Seong Kim;Raeyoon Jeong;Soon-Oh Kim;Ji-man Cha
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.259-271
    • /
    • 2023
  • Since the short-wave infrared spectrum has a significant range of variation depending on the production environment, countries with advanced resource exploration are collecting the spectrum and building a database. Representative organizations include the USGS and CSIRO, and they are currently carrying out a project in China that can synthesize and use a large number of existing data. The USGS library provides a total of 2,457 spectra targeting not only minerals but also various materials that respond to infrared radiation. Among these, there are 1,276 mineral spectra, which are about half of the total. The spectrum title includes information, such as analysis devices (NIC4, BECK, ASDNG, etc.), purity codes (a, b, c, d, u), and measurement methods (AREF, RREF, RTGC, TRAN). Analyzed raw data are provided in ASCII and GIF format. The CSIRO library has a total of 502 spectra, of which the majority, 493, correspond to mineral spectra. The USGS library is a free, publically available resource, while the CSIRO library is bundled with TSG8 or must be purchased separately. Among these, when comparing the eight spectra whose spectral shapes can be analyzed with the spectra of domestic illite, the positions of the absorption peaks are significantly different from those of domestic illite, except for one Japanese illite. Additional research will be needed to determine the causes of such differences, and the domestically relevant databases should be established as well.

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용)

  • Pil Seung KWON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.244-252
    • /
    • 2023
  • The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.