• Title/Summary/Keyword: spectral image

Search Result 853, Processing Time 0.028 seconds

위성 영상 탑재체에 관련된 영상품질 인자의 특성

  • Cho, Young-Min
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.66-74
    • /
    • 2002
  • The characteristics of the satellite image quality parameters driven by satellite imaging instrument are investigated. Since the satellite image is directly produced by the satellite imaging instrument, the satellite image quality depends on the imager performance highly. This is why the imager performance parameters are considered as an important part of the satellite image quality parameters. The imager performance parameters consist of spectral band parameters, ground sample distance(GSD) parameters, swath width parameters, imager Modulation Transfer Function (MTF), imager Signal to Noise Ratio(SNR), radiometric response characteristics parameters, pixel registration, and imager calibration.

  • PDF

A Reproduction algorithm of nighttime road-image for visibility evaluation of headlamps (헤드램프의 시계성 평가를 위한 야간도로 영상 재현 알고리즘)

  • Lee, Cheol-Hui;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.630-639
    • /
    • 2001
  • This study proposes a new calculation method for generating real nighttime lamp-lit images. In order to improve the color appearance in the prediction of a nighttime lamp-lighted scene, the lamp-lit image is synthesized based on spectral distribution using the estimated local spectral distribution of the headlamps and the surface reflectance of every object. The Principal component analysis method is introduced to estimate the surface color of an object, and the local spectral distribution of the headlamps is calculated based on the illuminance data and spectral distribution of the illuminating headlamps. HID and halogen lamps are utilized to create beam patterns and captured road scenes are used as background images to simulate actual headlamp-lit images on a monitor. As a result, the reproduced images presented a color appearance that was very close to a real nighttime road image illuminated by single and multiple headlamps compared to the conventional graphic-based algorithm.

  • PDF

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

Hybrid-Domain High-Frequency Attention Network for Arbitrary Magnification Super-Resolution (임의배율 초해상도를 위한 하이브리드 도메인 고주파 집중 네트워크)

  • Yun, Jun-Seok;Lee, Sung-Jin;Yoo, Seok Bong;Han, Seunghwoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1477-1485
    • /
    • 2021
  • Recently, super-resolution has been intensively studied only on upscaling models with integer magnification. However, the need to expand arbitrary magnification is emerging in representative application fields of actual super-resolution, such as object recognition and display image quality improvement. In this paper, we propose a model that can support arbitrary magnification by using the weights of the existing integer magnification model. This model converts super-resolution results into the DCT spectral domain to expand the space for arbitrary magnification. To reduce the loss of high-frequency information in the image caused by the expansion by the DCT spectral domain, we propose a high-frequency attention network for arbitrary magnification so that this model can properly restore high-frequency spectral information. To recover high-frequency information properly, the proposed network utilizes channel attention layers. This layer can learn correlations between RGB channels, and it can deepen the model through residual structures.

Study on the Method of Diagnosing the Individuals Crop Growth Using by Multi-Spectral Images

  • Dongwon Kwon;Jaekyeong Baek;Wangyu Sang;Sungyul Chang;Jung-Il Cho;Ho-young Ban;HyeokJin Bak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.108-108
    • /
    • 2022
  • In this study, multispectral images of wheat according to soil water state were collected, compared, and analyzed to measure the physiological response of crops to environmental stress at the individual level. CMS-V multi-spectral camera(Silios Technologies) was used for image acquisition. The camera lens consists of eight spectral bands between 550nm and 830nm. Light Reflective information collected in each band sensor and stored in digital values, and it is converted into a reflectance for calculating the vegetation index and used. According to the camera manual, the NDVI(Normalized Difference vegetation index) value was calculated using 628 nm and 752 nm bands. Image measurement was conducted under natural light conditions, and reflectance standards(Labsphere) were captured with plants for reflectance calculation. The wheat variety used Gosomil, and the wheat grown in the field was transplanted into a pot after heading date and measured. Three treatments were performed so that the soil volumetric water content of the pot was 13~17%, 20~23%, and 25%, and the growth response of wheat according to each treatment was compared using the NDVI value. In the first measurement after port transplantation, the difference in NDVI value according to treatment was not significant, but in the subsequent measurement, the NDVI value of the treatment with a water content of 13 to 17% was lowest and was the highest at 20 to 23%. The NDVI values decreased compared to the first measurement in all treatment, and the decrease was the largest at 13-17% water content and the smallest at 20-23%. Although the difference in NDVI values could be confirmed, it would be difficult to directly relate it to the water stress of plants, and further research on the response of crops to environmental stress and the analysis of multi-spectral image will be needed.

  • PDF

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

A Study on the Feature Extraction Using Spectral Indices from WorldView-2 Satellite Image (WorldView-2 위성영상의 분광지수를 이용한 개체 추출 연구)

  • Hyejin, Kim;Yongil, Kim;Byungkil, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.363-371
    • /
    • 2015
  • Feature extraction is one of the main goals in many remote sensing analyses. After high-resolution imagery became more available, it became possible to extract more detailed and specific features. Thus, considerable image segmentation algorithms have been developed, because traditional pixel-based analysis proved insufficient for high-resolution imagery due to its inability to handle the internal variability of complex scenes. However, the individual segmentation method, which simply uses color layers, is limited in its ability to extract various target features with different spectral and shape characteristics. Spectral indices can be used to support effective feature extraction by helping to identify abundant surface materials. This study aims to evaluate a feature extraction method based on a segmentation technique with spectral indices. We tested the extraction of diverse target features-such as buildings, vegetation, water, and shadows from eight band WorldView-2 satellite image using decision tree classification and used the result to draw the appropriate spectral indices for each specific feature extraction. From the results, We identified that spectral band ratios can be applied to distinguish feature classes simply and effectively.

THE MODIFIED UNSUPERVISED SPECTRAL ANGLE CLASSIFICATION (MUSAC) OF HYPERION, HYPERION-FLASSH AND ETM+ DATA USING UNIT VECTOR

  • Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.134-137
    • /
    • 2005
  • Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the minimum 'Spectral Angle' operation on behalf of 'Spectral Euclidian Distance' in the clustering process. In this study, our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised classification. The proposed algorithm (MUSAC) is applied to the Hyperion and ETM+ data and the results are compared with K-Meails and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus we anticipate that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each cluster mean in the USAC.

  • PDF

Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species (침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교)

  • Cho, Hyunggab;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.25-36
    • /
    • 2014
  • Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF