• Title/Summary/Keyword: spectral image

Search Result 855, Processing Time 0.026 seconds

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Classification of Hyperspectral Images Using Spectral Mutual Information (분광 상호정보를 이용한 하이퍼스펙트럴 영상분류)

  • Byun, Young-Gi;Eo, Yang-Dam;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. In this paper, we proposed a new spectral similarity measure, called Spectral Mutual Information (SMI) for hyperspectral image classification problem. It is derived from the concept of mutual information arising in information theory and can be used to measure the statistical dependency between spectra. SMI views each pixel spectrum as a random variable and classifies image by measuring the similarity between two spectra form analogy mutual information. The proposed SMI was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexisting classification method (SAM, SSV). The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.

  • PDF

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

A Frequency Spectrum Analysis based on FFT of Fire Thermal Image (FFT를 이용한 화재 열영상의 주파수 스펙트럼 분석)

  • Kim, Won-Ho;Jang, Bok-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • This paper presents the frequency spectral analysis based on FFT of the infrared ray fire thermal image, it is an object to deduce the conditions for determining fire alarm through the image processing with the frequency domain. After the candidate regions are separated by using pre-defined brightness value, the fast fourier transform is performed for consecutive infrared thermal images, the frequency spectral analysis of the thermal image analyzed DC and AC frequency distribution. The fire criterion of the thermal image was presented based on the analyzed result and a practicality was confirmed through the computer simulation.

Comparison of Image Merging Methods for Producing High-Spatial Resolution Multispectral Images (고해상도 다중분광영상 제작을 위한 합성방법의 비교)

  • 김윤형;이규성
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • Image merging techniques have been developed to integrate the advantage of different data type. The objective of this study is to present the optimal method for merging high spatial resolution panchromatic image, such as the latest commercial satellite data, and low spatial resolution mulitspectral images. For this study, a set of 2m resolution panchromatic and 8m resolution mulitspectral data were simulated by using airborne mulitspectral data. Five merging methods of MWD, IHS, PCA, HPF, and CN were applied to produce four bands of high spatial resolution mulitspectral data. Merging results were evaluated by visual interpretation, image statistics, semivariogram, and spectral characteristics. From the aspects of both spatial resolution and spectral information, the wavelet-based MWD merging method have shown very similar results compared with the original data used for the merging.

Remote Sensing Application for the Mineralized Zone Using Landsat TM Data (LANSAT TM자료에 의한 광화대조사 응용기법개발)

  • 姜必鍾;智光薰;曺民肇;崔映燮;Choi, Young Sup
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.79-94
    • /
    • 1986
  • TM data, which have better resolution in spatial and spectral than MSS data, were used for this study, and several Image Processing Techniques (IPT) were examined for finding the best IPT to fit to lineament extraction and mineralized zone mapping. The Ryeongnam area was selected as test area, because the area is one of major mineralized zones in Korea and its hydrothermal alteration zone is wider and deeper than other areas. The spatial filtering method is most optimum one for limeament extraction: that is, the directional spatial filtering is most efficient to detect N-S, E-W direction lineaments on the image, and the high boost filtering can be applied for mapping all direction lineaments. The ratio method was selected for detecting altered zone. It is possible to make several tens combinations in ratio with 7 bands of TM data, but considering spectral characteristics of each band of TM to the geological meterials and vegetation, the band 4/band 3(A), band 5/band 7(B), and B/A ratio methods were chosen among them. The 5/7 ratio image did not show clearly the altered area due to noise from vegetation cover, so the 4/3 ratio imae was used for trying to decrease the effect of vegetation. As a result the B/A ratio image showed quite nicely the altered zone of the test area. In conclusion, the spatial filtering is the best image processing techniques for lineament mapping, and the B/A ratio image in TM data is useful for the mineralized zone mapping.

Application of Spectral Mixture Analysis to Geological Mapping using LANDSAT 7 ETM+ and ASTER Images: Mineral Potential Mapping of Mongolian Plateau

  • Kim Seung Tae;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.425-427
    • /
    • 2004
  • Motivation of this study is based on these two aspects: geologic uses of ASTER and application scheme of Spectral Mixture Analysis. This study aims at geologic mapping for mineral exploration using ASTER and LANDSAT 7 ETM+ at Mongolian plateau region by SMA. After basic pre-processing such as the normalization, geometric corrections and calibration of reflectance, related to endmembers selection and spectral signature deviation, both methods using spectral library and using PPI(Pixel Purity Index) are performed and compared on a given task. Based on these schemes, SMA is performed using LANDSAT 7 ETM+ and ASTER image. As the results, fraction map showing geologic rock types are enough to meet purposes such as geologic mapping and mineral potential mapping in the case of both uses of these different types of remotely sensed images. It concluded that this approach based on SMA with LANDSAT and ASTER is regarded as one of effective schemes for geologic remote sensing.

  • PDF

A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method (기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구)

  • 장은석;김대성;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

Reconstruction of surface spectral reflectance using RGB digital color signals

  • 방상택;곽한봉;서봉우;이철희;안석출
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.49-52
    • /
    • 2000
  • The Estimation method for spectral reflectance of the object using five-band and nine-band have been developed. The five-band acquisition are required of five or three times same work for color image acquisition process. To solve the above problems, we proposed a new method that can be reconstructed spectral reflectance of object. The proposed method was to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The reconstruction of spectral reflectance was examined by computer simulation, and evaluated by MSE(Mean Square Error) and color difference between the original and reconstructed spectral reflectance.

  • PDF

Development of a Target Detection Algorithm using Spectral Pattern Observed from Hyperspectral Imagery (초분광영상의 분광반사 패턴을 이용한 표적탐지 알고리즘 개발)

  • Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1073-1080
    • /
    • 2011
  • In this study, a target detection algorithm was proposed for using hyperspectral imagery. The proposed algorithm is designed to have minimal processing time, low false alarm rate, and flexible threshold selection. The target detection procedure can be divided into two steps. Initially, candidates of target pixel are extracted using matching ratio of spectral pattern that can be calculated by spectral derivation. Secondly, spectral distance is computed only for those candidates using Euclidean distance. The proposed two-step method showed lower false alarm rate than the Euclidean distance detector applied over the whole image. It also showed much lower processing time as compared to the Mahalanobis distance detector.