• Title/Summary/Keyword: spectral function

Search Result 826, Processing Time 0.031 seconds

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Fatigue Damage Combination for Spread Mooring System under Stationary Random Process with Bimodal Spectrum Characteristics (바이모달 스펙트럼 특성을 가지는 정상확률과정에 대한 다점계류라인의 피로손상도 조합기법 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.813-820
    • /
    • 2010
  • The spread mooring system for FPSO is developed to explore deep sea area, in which swell is dominant. It is known that the tension response of mooring lines in this sea area shows bimodal spectrum. Assuming normal distribution of tension profile and Rayleigh distribution of tension amplitude, the power spectral density function (PSD) of the mooring tension under the bimodal stationary random process is applied for the calculation of spectrum fatigue. Three popular methods, which are simple summation method, combined spectrum method and Jioa-Moan method, are used to combine fatigue damages from bimodal spectrum characteristics. Each damage value is compared with damage using Rainflow Cycle Counting (RCC) method which is believed to be close to exact solution. Vanmarcke' parameter and RMS(Root Mean Square) ratio are employed to assess relative damage variations between from RCC method and from three combination methods. Finally the most reliable fatigue damage combining method for spread mooring system is suggested.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

Simulation and Verification of the Received Signals in Rician Channel (라이시안 채널에서의 수신 신호 모의 실험 및 검증)

  • Lee, Bom-Son;Lee, Il-Yong;Park, Jung-Il;park, Kyung-Ryung;Yeon, Kwang-Il;Eo, Ik-Soo;Kang, In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.347-358
    • /
    • 1998
  • The possibility of modeling the complex and diversified radio environment using Rician channel has been considered. The signals received in Rician channel have been simulated using the computer simulator. The PDF(Probability Density Function of the Envelope amplitude), PSD(Power Spectral Density), LCR(Level Crossing Rate), ADF(Average Duration of Fades) and BER(Bit Error Rate) of the simulated signal have been compared with those of theory. They were shown to be in good agreement.

  • PDF

Scheme and application of phase delay spectrum towards spatial stochastic wind fields

  • Yan, Qi;Peng, Yongbo;Li, Jie
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.433-455
    • /
    • 2013
  • A phase delay spectrum model towards the representation of spatial coherence of stochastic wind fields is proposed. Different from the classical coherence functions used in the spectral representation methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and comparative studies indicate that the developed model is of rationality and of applicability which matches well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily simulated.

Analysis of RP Power Amplifier Nonlinearity and BER Characteristics for Multi­Carrier Transmission System (다중반송 전송시스템을 위한 RF 전력증폭기의 비선형 특성과 BER관계 분석)

  • 신동환;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1612-1620
    • /
    • 2003
  • This papers describes a nonlinear transfer function modelling of designed GaAs FET power amplifier by measured and simulated values of designed PA amplifier for multi­carrier transmission system, With the results of PA nonlinearity characteristic, we can estimates AM­AM and AM­PM of designed PA. According to the estimated nonlinear characteristics, we can analysis the ACPR of PA for spectral regrowth, the error vector measurement(EVM) of constallation signals and bit error rate of QPSK and 64­QAM. The suggested nonlinear modelling results are used to get an accurate estimate of digital characteristics between PA amplifier and wireless multi­carrier transmission system using OFDM.

Characterization of the Spatial Variability of Paper Formation Using a Continuous Wavelet Transform

  • Keller, D.Steven;Luner, Philip;Pawlak, Joel J.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.14-25
    • /
    • 2000
  • In this investigation, a wavelet transform analysis was used to decompose beta-radiographic formation images into spectral and spatial components. Conventional formation analysis may use spectral analysis, based on Fourier transformation or variance vs. zone size, to describe the grammage distribution of features such as flocs, streaks and mean fiber orientation. However, these methods have limited utility for the analysis of statistically stationary data sets where variance is not uniform with position, e.g. paper machine CD profiles (especially those that contain streaks). A continuous wavelet transform was used to analyze formation data arrays obtained from radiographic imaging of handsheets and cross machine paper samples. The response of the analytical method to grammage, floc size distribution, mean fiber orientation an sensitivity to feature localization were assessed. From wavelet analysis, the change in scale of grammage variation as a function of position was used to demonstrate regular and isolated differences in the formed structure.

  • PDF

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

Running Monitoring by the Noise and Vibration Measurement near the Wheelset of the High-Speed Trains : A Preliminary Research (고속철도차량 윤축부근의 소음과 진동 측정을 통한 주행중 감시의 기초연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1454-1462
    • /
    • 2008
  • This paper is focused on the analysis of the noise and vibration measured near the wheelset of the high-speed trains using a time-varying frequency transform as a preliminary research of running monitoring. Due to the non-stationary characteristics, it is necessary to examine noise and vibration of the train with time-varying frequency transforms. In this paper, the short-time Fourier transform method is utilized - the stored data is localized by modulating with a window function, and Fourier transform is taken to each localized data. For the examination, the non-stationary noise and vibration of the high-speed train's wheelset are measured by using some microphones and accelerometers, and those signals are stored in a on-board data acquisition system. The non-stationary random signal analyses with the short-time Fourier transform are performed, and the result are classified as follows; auto-spectral density, cross-spectral density, frequency response, and coherence functions. From those functions, it is possible to observe the frequency characteristics of sleepers, switchers, tunnels, and steel bridges. Also, some distinct peaks, which are not dependent upon the train's speed, are identified from the results.

  • PDF

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.