• Title/Summary/Keyword: spectral band

Search Result 869, Processing Time 0.028 seconds

WorldView-2 pan-sharpening by minimization of spectral distortion with least squares

  • Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.353-357
    • /
    • 2011
  • Although the intensity-hue-saturation (IHS) method for pan-sharpening has a spectral distortion problem, it is a popular method in the remote sensing community and has been used as a standard procedure in many commercial packages due to its fast computing and easy implementation. Recently, IHS-like approaches have tried to overcome the spectral distortion problem inherited from the IHS method itself and yielded a good result. In this paper, a similar IHS-like method with least squares for WorldView-2 pan-sharpening is presented. In particular, unlike the previous methods with three or four-band multispectral images for pan-sharpening, six bands of WorldView-2 multispectral image located within the range of panchromatic spectral radiance responses are considered in order to reduce the spectral distortion during the merging process. As a result, the new approach provides a satisfactory result, both visually and quantitatively. Furthermore, this shows great value in spectral fidelity of WorldView-2 eight-band multispectral imagery.

Bi-modal spectral method for evaluation of along-wind induced fatigue damage

  • Gomathinayagam, S.;Harikrishna, P.;Abraham, A.;Lakshmanan, N.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.255-270
    • /
    • 2006
  • Several analytical procedures available in literature, for the evaluation of wind induced fatigue damage of structures, either assume the wide band random stress variations as narrow band random process or use correction factors along with narrow band assumption. This paper compares the correction factors obtained using the Rainflow Cycle (RFC) counting of the measured stress time histories on a lamp mast and a lattice tower, with those evaluated using different frequency domain methods available in literature. A Bi-modal spectral method has been formulated by idealising the single spectral moment method into two modes of background and resonant components, as considered in the gust response factor, for the evaluation of fatigue of slender structures subjected to "along-wind vibrations". A closed form approximation for the effective frequency of the background component has been developed. The simplicity and the accuracy of the new method have been illustrated through a case study by simulating stress time histories at the base of an urban light pole for different mean wind speeds. The correction factors obtained by the Bi-modal spectral method have been compared with those obtained from the simulated stress time histories using RFC counting method. The developed Bi-modal method is observed to be a simple and easy to use alternative to detailed time and frequency domain fatigue analyses without considerable computational and experimental efforts.

A study on the wsggm-based spectral modeling of radiation properties of water vapor (회체가스중합법에 의한 수증기의 파장별 복사물성치 모델에 관한 연구)

  • Kim, Uk-Jung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3371-3380
    • /
    • 1996
  • Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.

Enhanced Spectral Envelope Coding Scheme Using Inter-frame Correlation for G.729.1 (G.729.1 코더에서 프레임 간의 상호상관 관계를 이용한 개선된 스펙트럼 포락 코딩 방법)

  • Cho, Keun-Seok;Sung, Jong-Mo;Hahn, Min-Soo;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.97-103
    • /
    • 2009
  • This paper describes a new algorithm for encoding spectral envelope in the time domain alias cancellation (TDAC) part of G.729.1. The spectral envelope and modified discrete cosine transform (MDCT) coefficients of the weighted code-excited linear predictive (CELP) coding error in lower-band and the higher-band input signal are encoded in the TDAC part. In order to reduce allocation bits for spectral envelope coding, a new algorithm using sub-band correlation between adjacent frames is proposed. In addition, to improve the quality of decoded signals, two bit allocation strategies using reduced bits from the proposed algorithm are proposed. The performance of the proposed algorithm is evaluated in terms of objective quality and bit reduction rates. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

  • PDF

Reconstruction of surface spectral reflectance using RGB digital color signals

  • 방상택;곽한봉;서봉우;이철희;안석출
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.49-52
    • /
    • 2000
  • The Estimation method for spectral reflectance of the object using five-band and nine-band have been developed. The five-band acquisition are required of five or three times same work for color image acquisition process. To solve the above problems, we proposed a new method that can be reconstructed spectral reflectance of object. The proposed method was to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The reconstruction of spectral reflectance was examined by computer simulation, and evaluated by MSE(Mean Square Error) and color difference between the original and reconstructed spectral reflectance.

  • PDF

Optimization of color filters selection to estimate surface spectral reflectance of Munsell colors (물체의 분광반사율 추정을 위한 최적필터의 선정)

  • 이승희;이을환;유미옥;노상철;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.121-131
    • /
    • 1998
  • The object color does not look same under the different light source. It depends on the surface spectral reflectance and the spectral distribution of light source. Therefore we should find the surface spectral reflectance of object color and the spectral distribution of light source for color reproduction. Using Wiener estimation, we can estimate the spectral reflectance from low dimensional images obtained with multi-band image acquisition system. The kind and the number of imaging filters have the effect on the estimation of the spectral reflectance. Therefore it is important that optimal filters are selected to minimize the error of the result. In this paper, we describe methods to select optimal filters with minimum error between measured and estimated surface spectral reflectance and to estimate surface spectral reflectance of Munsell color chart from six multi-band images by using Wiener estimation.

  • PDF

Estimation of Surface Spectral Reflectance using A Population with Similar Colors (유사색 모집단을 이용한 물체의 분광 반사율 추정)

  • 이철희;서봉우;안석출
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evaluate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth Color Checker. As a result, the proposed method showed a lower mean square error between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.

  • PDF

Reflectance of Geological Media by Using a Field spectrometer in the Ungsang Area, Kyungsang Basin

  • Kang, Kyung-Kuk;Song, Kyo-Young;Ahn, Chung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2001
  • Using a field spectrometer having a spectral range of 0.4$\mu\textrm{m}$~2.5$\mu\textrm{m}$ with a spectral resolution of 1nm, the researchers measured the reflectance of granite, andesitic rocks, sedimentary rocks, and pyrophyllite ore in the Ungsang area, Kyungsang Basin, South Korea. Spectral characteristics of the geological media were investigated from the analysis. The in-situ measured sites were selected in well exposed rock outcrops. In case of unfavorable weather conditions, rocks were sampled and remeasured under natural solar condition. The reflectance of field data was measurd at three sistes for granite, six sites for andesitic rock three sites for sedimentary rocks, and two sites for pyrophyllite ore. The vibrational absorption bands for pyrophyllite are detected in the spectral range of 2.0$\mu\textrm{m}$~2.5$\mu\textrm{m}$. The absorption band for granites in study area is not distinctive. The reflectance measured under normal field conditions showed strong absorption at wavelengths of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ due to the effect of moisture in the atmosphere. After the bands of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ were removed, Hull Quotient method was applied to characterize absorption bands. The reflectances of field data were calculated to estimate the band ratio corresponding to the Landsat TM and EOS Terra ASTER. The researchers suggest here that the TM band2, band3, band4, and band7 or ASTER band2, band3, band4, and band9 are the best combination for discriminating outcrops. The researchers tested and demonstrated using a Landsat TM image in the study area. For geologic applications, decorrelation stretch is also an effective tool to enhance the exposed rock mass in images.

Designing Optimal Pulse-Shapers for Ultra-Wideband Radios

  • Luo, Xiliang;Yang , Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.344-353
    • /
    • 2003
  • Ultra-wideband (UWB) technology is gaining increasing interest for its potential application to short-range indoor wireless communications. Utilizing ultra-short pulses, UWB baseband transmissions enable rich multipath diversity, and can be demodulated with low complexity receivers. Compliance with the FCC spectral mask, and interference avoidance to, and from, co-existing narrow-band services, calls for judicious design of UWB pulse shapers. This paper introduces pulse shaper designs for UWB radios, which optimally utilize the bandwidth and power allowed by the FCC spectral mask. The resulting baseband UWB systems can be either single-band, or, multi-band. More important, the novel pulse shapers can support dynamic avoidance of narrow-band interference, as well as efficient implementation of fast frequency hopping, without invoking analog carriers.

STATISTICAL NOISE BAND REMOVAL FOR SURFACE CLUSTERING OF HYPERSPECTRAL DATA

  • Huan, Nguyen Van;Kim, Hak-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.111-114
    • /
    • 2008
  • The existence of noise bands may deform the typical shape of the spectrum, making the accuracy of clustering degraded. This paper proposes a statistical approach to remove noise bands in hyperspectral data using the correlation coefficient of bands as an indicator. Considering each band as a random variable, two adjacent signal bands in hyperspectral data are highly correlative. On the contrary, existence of a noise band will produce a low correlation. For clustering, the unsupervised ${\kappa}$-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID. Furthermore, this paper proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures.

  • PDF