• 제목/요약/키워드: spectral angle mapper classifier

검색결과 6건 처리시간 0.017초

Support Vector Machine and Spectral Angle Mapper Classifications of High Resolution Hyper Spectral Aerial Image

  • Enkhbaatar, Lkhagva;Jayakumar, S.;Heo, Joon
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.233-242
    • /
    • 2009
  • This paper presents two different types of supervised classifiers such as support vector machine (SVM) and spectral angle mapper (SAM). The Compact Airborne Spectrographic Imager (CASI) high resolution aerial image was classified with the above two classifier. The image was classified into eight land use /land cover classes. Accuracy assessment and Kappa statistics were estimated for SVM and SAM separately. The overall classification accuracy and Kappa statistics value of the SAM were 69.0% and 0.62 respectively, which were higher than those of SVM (62.5%, 0.54).

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • 제29권2호
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.

무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류 (The Hyperspectral Image Classification with the Unsupervised SAM)

  • 김대성;김진곤;변영기;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.159-164
    • /
    • 2004
  • SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.

  • PDF

산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석 (Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification)

  • 신정일;서원우;김태정;우충식;박주원
    • 대한원격탐사학회지
    • /
    • 제35권6_2호
    • /
    • pp.1095-1106
    • /
    • 2019
  • 산불 피해는 복구, 보상 및 2차 피해 예방을 위해 빠르고 정확히 조사되어야 한다. 원격탐사 기반의 산불 피해강도 조사 방법으로 주로 산불 전과 후의 반사율 및 분광지수의 차이를 비교하고 있다. 최근 고해상도 위성영상 및 무인기 영상의 활용이 증가하고 있으나, 언제 어디에서 발생할지 예측할 수 없는 산불에 대한 발생 전 영상을 획득하는 것이 쉽지 않다. 본 연구에서는 산불 피해강도 분류에 있어 고해상도 영상과 감독분류 기법의 활용 가능성을 분석하고자 하였다. 산불 후에 촬영된 KOMPSAT-3A 영상과 무인기 다중분광영상에 반사율의 절대값을 이용하는 최대우도법과 반사율의 패턴을 이용하는 분광각매퍼의 두 가지 감독분류 기법을 적용하였다. 그 결과 분류 기법 측면에서 최대우도법이 분광각매퍼에 비해 높은 분류정확도를 보여주었으며, 이는 피해강도 등급 간에 분광반사율의 절대값은 다르지만 패턴이 유사한 등급들이 존재하기 때문인 것으로 판단된다. 공간해상도 측면에서 상대적으로 해상도가 높은 무인기 영상의 분류정확도가 위성영상보다 높게 나타났다. 그러나 무인기와 위성 영상 모두 분류정확도가 매우 높게 나타나고 있어 피해강도 분류에 활용 가능성이 높다고 할 수 있다. 따라서, 피해강도 분류에 있어 산불 후에 촬영된 고해상도 영상들을 이용할 수 있을 것으로 판단된다.

Band Selection Using Forward Feature Selection Algorithm for Citrus Huanglongbing Disease Detection

  • Katti, Anurag R.;Lee, W.S.;Ehsani, R.;Yang, C.
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.417-427
    • /
    • 2015
  • Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small differences without unmixing endmember components and therefore without the need for an endmember library. However, large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best results.

Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고 (A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data)

  • 김천
    • 대한원격탐사학회지
    • /
    • 제12권2호
    • /
    • pp.169-198
    • /
    • 1996
  • 본 연구는 낙동강 하류지역의 지속가능한 개발과 환경보전을 위하여 위성탑재 Fuyo-1 OPS VNIR 주사자료에 의한 겨울철 환경계측을 시범·고찰하였다 따라서 그림자 효과가 강하게 발생하는 산림에 대해 방향성 분광반사특성과 식생지수를 중점분석하고 분광각대응분류를 통하여 겨울철 토지피복도를 산출하였다. 그리고 해·담수 분포도와 낙동강 하류의 수질오염도를 작성하기 위하여 가림기법, 최대우도추정분류기, 그리고 유색밀도편분기법을 응용하였다. 본 연구에서 획득된 결과를 요약하면 첫째로 양지사면의 분광반사치와 식생지수값 모두 음지사면보다 높다. 둘째로 위장반사현상이 일어나는 지역을 주제별 분류를 할 경우 분광각대응분류 산법이 유용하다 셋째로 겨울철 낮은 태양고도에도 해·담수분포도를 산출하는데 최대우도추정분류산법이 적합하다. 넷째로 근적외선밴드를 사용하여 가림·유색밀도편분기법에 의해 산출된 수질오염 도는 낙동강의 수질상태를 분석할 수 있다. 마지막으로 유색코드 정규식생지수 화상은 사면방위에 따른 임관밀도를 파악하는데 이용된다.