• 제목/요약/키워드: specify gravity

검색결과 3건 처리시간 0.016초

열충격 시험에 의한 암석의 물성변화 (Physical Properties of Rocks according to Heating Treatment)

  • 김재환;이명성;이재만;이미혜;박성미
    • 보존과학연구
    • /
    • 통권31호
    • /
    • pp.31-42
    • /
    • 2010
  • This study were performed thermal shock test for four kind of different rocks (Iksan granite, Namsan granite, Jeongseon marble, Yeongyang sandstone), and according to heating temperature($400^{\circ}C$, $600^{\circ}C$) on samples were investigated physical properties such as specify gravity, porosity, p-wave velocity. As a result, the tendency was appeared that porosity increased, and specific gravity and p-wave velocity decreased at a more higher temperature. But, the situation of change appeared characteristic according to temperature and rock types. In the case of Yeongyang sandstone, it appeared in especially porosity increasing at $400^{\circ}C$. The specific gravity was little change in the all the rock at $400^{\circ}C$ but the decreased at $600^{\circ}C$. Therefore the specific gravity in the temperature range is due to the relatively small impact on the change is expected. Porosity of the granite at $400^{\circ}C$ changes little. but marble in the rate of change is large. Conversely, the sandstone porosity decreased. At $600^{\circ}C$ increased porosity in all of rocks. particularly sandstone the smallest increase in porosity. Experiments showed that p-wave velocity measured through dry rocks was sensitive to quantify the thermal damage. The p-wave velocity of all rocks decreased with increasing temperature. In the relation between porosity and p-wave velocity, p-wave velocity decreased with increasing porosity. On the other hand, in case of Yeongyang sandstone p-wave velocity decreased with decreasing porosity. thus, development of microcracks more affects p-wave velocity than porosity. In this study, damage intensity was well explained with porosity and p-wave velocity values depending on temperature increase.

  • PDF

암석의 물리적 특성 변화에 대한 온도의 영향 (A Study on Effects of Temperature for Physical Properties Change of rocks)

  • 김재환;이명성;이미혜;이재만;박성미
    • 암석학회지
    • /
    • 제20권3호
    • /
    • pp.141-149
    • /
    • 2011
  • 암석의 물리적 특성 변화에 대해 온도의 영향을 연구하기 위해 2종의 화강암류와 대리암, 사암을 전기로에서 $400^{\circ}C$$600^{\circ}C$로 가열하였다. 모든 시료에서 가열 후 물리적 특성(비중, 공극률, 흡수율, 초음파속도)과 색상 변화는 보이나, 편광현미경을 이용한 광물학적 변화는 뚜렷하지 않다. 특히 물리적 특성 변화에서 공극률과 흡수율은 증가하고, 비중과 초음파 속도는 감소하는 경향을 보이며, 온도가 증가할수록 변화폭은 크게 나타난다. 여기서 측정한 공극률은 암석의 전체 공극률을 반영하지 못하고 있으나 온도에 의한 암석의 표면 상태 변화를 반영한다 반면 초음파 속도는 암석의 전체적인 손상 정도를 파악하는데 유용하다. 그러므로 온도에 의한 암석의 물리적 특성 변화를 설명하기 위해 공극률과 초음파 속도는 상호 비교해야 한다.

Influence of high axial compression ratios in RC columns on the seismic response of MRF buildings

  • Sergio Villar-Salinas;Sebastian Pacheco;Julian Carrillo;Francisco Lopez-Almansa
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.51-70
    • /
    • 2024
  • Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations, this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper, these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings, the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength, hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verifications.