• Title/Summary/Keyword: specific shear energy(us)

Search Result 5, Processing Time 0.021 seconds

Analysis of 3-D Cutting Process with Single Point Tool

  • Lee, Young-Moon;Park, Won-Sik;Song, Tae-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • This study presents a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool. The edge of a single point tool including a circular nose is modified to an equivalent straight edge, thereby reducing the 3-D cutting with a single point tool to the equivalent of oblique cutting. Then, by transforming the conventional coordinate systems and using the measurements of three cutting force components, the force components on the rake face and shear plane of the equivalent oblique cutting system can be obtained. As a result, the chip-tool friction and shear characteristics of 3-D cutting with a single point tool can be assessed.

  • PDF

Case Study of Dynamic Amplification Characteristics of the Seismic Stations Using Observed Seismic Waves (관측지진파를 이용한 지반증폭특성 사례분석)

  • Lee, Jundae;Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • It is necessary to consider the site amplification for estimating SSI (soil structure interaction) and seismic source with more confidence. The horizontal to vertical (H/V) ratio technique in spectral domain is one of several techniques to estimate empirical site transfer function. The technique, originally proposed by Nakamura (1989), is applied to analyze the surface waves in the microtremor records. However, the application of this technique has been widened to the shear wave energy of strong motions for estimating site amplification. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that each station has the its own characteristics of the specific resonance, high-band, and low-band frequency. The characteristics of the resonance frequency is more important because the quality of the seismic records are dependent on the resonance frequency. The result can be used for the study of site classification and removal of the site amplification effects from observed records can give us more reliable seismic source parameters.

  • PDF

A Study on the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites using Shear- and Coda-Wave (S파 및 Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.432-439
    • /
    • 2009
  • For more reliable estimation of seismic source, attenuation properties and dynamic ground property, site amplification function should be considered. Among various estimation methods, this study used the Nakamura's method (1989) for estimating site amplification characteristics. This method was originally applied to the surface waves of background noise and therefore there are some limitations in applying to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to S wave and Coda wave energy, which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which were occurred recently, with magnitude range from 3.6 to 5.1. Each station showed characteristic site amplification property in low-, high- and resonance frequencies. Some of the stations showed as high as 4 times of site amplification in the range of specific frequencies, which may imply abnormal small scale geologic strata below the station or development of various trapped modes in the basin structure. Moreover, removal of site amplification can give us more reliable seismic source and attenuation parameters, addition to the seismic hazard estimation.

A Comparison Study of the Amplification Characteristics of the Seismic Station near Yedang Reservoir using Background Noise, S-wave and Coda wave Energy (배경잡음, S파 및 Coda파 에너지를 이용한 예당저수지 인근부지의 지반증폭 특성에 관한 비교 연구)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.632-642
    • /
    • 2015
  • Seismograms are composed of 3 characteristics, that is, seismic source, attenuation, and site amplification. Among them, site amplification characteristics should be considered significantly to estimate seismic source and attenuation characteristics with more confidence. This purpose of this study is to estimate the site amplification characteristics at each site using horizontal to vertical (H/V) spectral ratio method. This method, originally proposed by Nakamura (1989), has been applied to study the surface waves in microtremor records. It has been recently extended to the shear wave energy of strong motion and applied to the study of site amplification. This study analyzed the H/V spectral ratio of 6 ground motions respectively using observed data from 4 sites nearby in Yedang Reservoir. And then, site amplification effects at each site, from 3 kinds of seismic energies, that is, S waves, Coda waves energy, and background noise were compared each other. The results suggested that 4 sites showed its own characteristics of site amplification property in specific resonance frequency ranges (YDS: ~11 Hz, YDU: ~4 Hz, YDD: ~7 Hz). Comparison of this study to other studies using different analysis method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF