• Title/Summary/Keyword: specific probes

Search Result 225, Processing Time 0.032 seconds

Visualization of Candidate Division OP3 Cocci in Limonene-Degrading Methanogenic Cultures

  • Rotaru, Amelia-Elena;Schauer, Regina;Probian, Christina;Mussmann, Marc;Harder, Jens
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.457-461
    • /
    • 2012
  • Members of candidate division OP3 were detected in 16S rRNA gene clone libraries from methanogenic enrichment cultures that utilized limonene as a carbon and energy source. We developed probes for the visualization of OP3 cells. In situ hybridization experiments with newly designed OP3-specific probes [OP3-565 and Eub-338(VI)] revealed abundant small OP3 cocci attached to larger cells. Syntrophic Deltaproteobacteria, OP3 cells, and methanogens affiliating with Methanoculleus and Methanosaeta formed the limonene-degrading community.

Synthesis of 68Ga-labeled gold nanoparticles for tumor targeted positron emission tomography imaging

  • Jeon, Jongho;Choi, Mi Hee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • Herein we present the synthesis of $^{68}Ga$-labeled gold nanoparticles for in vivo PET imaging. A novel chelator DTPA-Cys was easily prepared from diethylenetriaminepentaacetic dianhydride in high yield. The ${\alpha}_v{\beta}_3$ integrin receptor targeted gold nanoparticle probe was synthesized by using DTPA-Cys, polyethylene glycol and cRGD peptide. $^{68}Ga$ labeling of cRGD conjugated gold nanoparticle was carried out at $40^{\circ}C$ for 30 min. Observed radiochemical yield was more than 75% as determined by radio-TLC and the probe was purified by centrifugation. In vitro stability test showed that 90% of $^{68}Ga$-labeled gold nanoparticle probe was stable in FBS for 1 h. Those results demonstrated that $^{68}Ga$-labeled gold nanoparticle could be used as a potentially useful probe for specific tumor imaging.

The radioligands with VEGF121 for angiogenesis of tumor

  • Yim, Min Su;Ryu, Eun Kyoung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 2018
  • Angiogenesis is the new blood vessel formation process and has known to a fundamental event of tumor growth and metastasis. Especially, vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the crucial regulators of angiogenesis in tumor. VEGF-A is one of the VEGF family and binds to endothelial cell specific VEGFR1 and VEGFR2, which are associated with tumor growth and tumor angiogenesis. $VEGF_{121}$ is more tumorigenic isomer of VEGF-A. Targeted VEGF or VEGFR molecular imaging has been widely used to enable diagnosis and monitoring of proliferation and development of angiogenic tumors. Therefore, in this review, we have focused on the radioligands with $VEGF_{121}$ for angiogenesis of tumor.

Synthesis and evaluation of metal purine-type complexes for lung cancer imaging

  • Kang, Kyeung Jun;Ko, In Ok;Park, Ji-Ae;Kim, Jung Young
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Purine type compounds has been recently reported to cause the death for lung cancer cell, related to microtubules-targeting agents (MTAs). Therefore it can be used to develop as theranostic radiopharmceuticals in nuclear medicine or gadolinium-based MRI imaging agents by chelate chemistry. In the study, we tried to chemically bind a DOTA chelate on the end of purine compound and obtained a specific conjugate of DOTA-purine for metal coordination. In particular, radiometal like Cu-64, for the development of MRI imaging agents, can be utilized to choice good candidates before the synthesis of gadolinium complexes. By the screening of radioisotope technique, Gd-DOTA-purine type complex was successfully prepared and showed MRI imaging for lung cancer cell into the mouse model.

Synthesis of 18F-labeled 2-cyanobenzothiazole derivative for efficient radiolabeling of N-terminal cysteine-bearing biomolecules

  • Jung Eun Park;Jongho Jeon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2021
  • This article provides an efficient 18F-labeling protocol based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and N-terminal cysteine-containing biomolecules. The 18F-labeled CBT (18F-1) was prepared by radiofluorination of the tosylated precursor 4 with 18-crown-6/K+/[18F]F- complex. Using the purified 18F-1, 18F-labeled peptide (18F-7) and protein (18F-8) could be synthesized efficiently under mild conditions. This strategy would provide a convenient approach for rapid and site-specific 18F-labeling of various peptides and proteins for in vivo imaging and biomedical applications.

Radiolabeled Benzamide Derivatives for Development of Malignant Melanoma Imaging Agents

  • Ayoung Pyo;Boreum Song;Heejung Kim;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Malignant melanoma has an aggressive nature and high metastatic potential that result in one of the highest cancer mortality rates. Over the past three decades, primary and metastatic melanoma incidence has rapidly increased. The recent advances in diagnostic technology have shown promise, but there is still an enormous need for specific detection methods to diagnose malignant melanoma. Positron emission tomography can visualize a particular biomarker of malignant melanoma and promise a noninvasive image of micrometastases. However, the development of PET radiopharmaceuticals remains necessary for diagnosing malignant melanoma by using positron emission tomography. In this review, the history and a general overview of PET radionuclide labeled benzamide derivatives, including their radiosynthesis, in vivo characterization, and evaluation, are provided as imaging agents for malignant melanoma.

Challenge of 2-dimensional Inorganic Nanoparticles in Nuclear Medicine

  • Sairan Eom;Jin-Ho Choy;Kyo Chul Lee;Yong Jin Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • 2-Dimensional inorganic nanoparticles with high surface area and ion-exchangeable properties have been continuously growing based on nanotechnology in the field of nanomedicine. Among one of the 2-D nanoparticles, layered double hydroxide (LDH) has been intensively explored as drug delivery due to its low toxicity, enhanced cellular permeability, and high drug loading capacity. Moreover, controllable chemical composition makes possible varying isomorphic layered materials for therapy and imaging of diseases. In this review, specific structural characteristics of LDH were introduced, and its potential for application as a biocompatible therapeutic agent and diagnostic one was addressed in nuclear medicine, one of promising fields in nanomedicine.

Generation of FISH Probes Using Laser Microbeam Microdissection and Application to Clinical Molecular Cytogenetics

  • Shim, Sung-Han;Kyhm, Jee-Hong;Chung, Sung-Ro;Kim, Seung-Ryong;Park, Moon-Il;Lee, Chul-Hoon;Cho, Youl-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1079-1082
    • /
    • 2007
  • Chromosome microdissection and the reverse FISH technique is one of the most useful methods for the identification of structurally abnormal chromosomes. In particular, the laser microbeam microdissection (LMM) method allows rapid isolation of a target chromosome or a specific region of chromosomes without damage of genetic materials and contamination. Isolated chromosomes were directly amplified by the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), and then the FISH probes labeled with spectrum green- or spectrum red-dUTP were generated by nick-translation. Whole chromosome painting (WCP) probes were successfully generated from only 5 copies of the chromosome. With this method, we produced 24 WCP probes for each human chromosome. We also tried to characterize a marker chromosome, which seemed to be originated from chromosome 11 on conventional banding technique. The marker chromosomes were isolated by the LMM method and analyzed by reverse FISH. We elucidated that the marker chromosome was originated from the short arm of chromosome 5 ($5p11{\to}pter$). A fully automated and computer-controlled LMM method is a very simple laboratory procedure, and enables rapid and precise characterization of various chromosome abnormalities.

Detection of Mycobacterium Tuberculosis by In Situ Hybridization (조직내교잡법을 이용한 결핵균의 검출)

  • Park, Chang-Soo;Kim, Young-Chul;Lee, Jee-Shin;Jung, Jong-Jae;Kim, Doo-Hong;Kim, Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.699-708
    • /
    • 2000
  • Background : A presumptive histopathologic diagnosis of tuberculosis is commonly based on the finding of acid-fast bacilli upon microscopic examination of a diagnostic specimens. Although this traditional histochemical staining method is satisfactory, it is time-consuming and not species-specific. For more specific assessment, in situ hybridization assay with oligonucleotide probes is introduced. Methods : The human surgical specimens were obtained from tuberculosis patients, and experimental specimens were made by injecting cultured M. tuberculosis organisms into fresh rat liver. Oligonucleotide probes complementary to ribosomal RNA portion were synthesized and labeled with multiple biotin molecules. For a rapid detection, all procedures were carried out using manual capillary action technology on the Microprobe staining system. Results : The in situ hybridization assay produced a positive reaction in experimental specimens (80-90% sensitivity) after pepsin-HCl pre-treatment for a good permeabilization of probes, but reliable result was not obtained from human surgical specimens. Conclusion : It is, therefore, suggested that biotin-labeled oligonucleotide probes have considerable potential for identification and in situ detection of M. tuberculosis but, there are some barriers to overcome for the diagnostic use of this method.

  • PDF

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.