• Title/Summary/Keyword: specific heat

Search Result 1,575, Processing Time 0.038 seconds

Development of the Pushing Type Cutting Device to Dismantle Concrete Structure for Decommissioning of Nuclear Power Plant (원전해체 시 콘크리트 구조물 절단을 위한 밀기형 절단장치 개발)

  • Lee, Bong-Jae;Kwon, Yong-Kyu;Hong, Chang-Dong;Lee, Dong-Won;Min, Kyong-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.103-111
    • /
    • 2020
  • Pulling-type cutting devices, which use a diamond wire saw, have been used generally for cutting concrete structures. In this study, a pushing-type cutting device with a collection cover was developed by overcoming the disadvantages of pulling-type devices. In this device, dry or liquid methods can be selected to cool frictional heat. Operation and leakage tests of the dust generated during the dismantling of a concrete structure were carried out, confirming the suitable operation of the fabricated cutting device; the leakage rate was approximately 1.7%. For a conservative evaluation, the internal dose of workers was estimated in dismantling the core center part of biological shield concrete with a specific activity of 99.5 Bq·g-1. The committed effective dose per worker was 0.25 mSv. The developed cutting device contributed to reducing radioactive concrete waste and minimizing worker exposure due to its easy installation. Therefore, it can be utilized as a cutting apparatus for dismantling not only reinforced concrete structures but also radioactive biological shield concrete in nuclear power plant decommissioning efforts.

A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks (암석 열전도도 측정을 위한 Laser Flash Method와 Divided-bar Method 비교)

  • Oh, Jae-Ho;Kim, Hyoung-Chan;Park, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.387-397
    • /
    • 2011
  • In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range($25-200^{\circ}C$) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.

Experimental Study of Workpiece Temperature Variation in Reheating Furnace (재가열로에서 소재 온도 변화의 실험적 분석)

  • Lee, Chunsik;Lee, Jaeyong;Ryu, Bo-Hyun;Yeom, Choongsub;Rhim, Dong-Ryul
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.100-106
    • /
    • 2017
  • The materials of SUS304 and SS400 are adopted for prediction of workpiece temperature variation according to ambient temperature in a reheating furnace. Five thermocouples were installed in a depth direction inside the material, and the ambient temperature was raised to 1200 Celsius degrees. As a result, the material average temperature reached more than 1150 Celsius degrees, and the surface and inside of workpiece locally showed a temperature difference of more than 10K. In order to verify the experimental results, numerical analysis was conducted by applying a thermal model, and the error of numerical simulation compared with the experimental results was within the range of 15K at the average outlet temperature. Also, the error was relatively higher in the SS400 material, which has a larger specific heat change than the SUS304 material. In conclusion, the workpiece temperature in the reheating furnace can be achieved through the atmospheric temperature control, and it is experimentally proved that the material temperature change according to the atmospheric temperature can be estimated within about 3% error range at the outlet position using a thermal model.

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

Characteristics and Purification of Bacteriocin Produced by Lactobacillus acidophilus GP4A (Lactobacillus acidophilus GP4A가 생산하는 박테리오신의 특성 및 정제)

  • Han, Gyeong-Sik;Joo, Gwan-Seok;Kim, Se-Heon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • A bacteriocin produced by Lab. acidophilus GP4A isolated from fecal contents of pig was characterized. Lab. acidophilus GP4A produced a heat-stable and pH-resistant bacteriocin, which was hydrolyzed by trypsin and pepsin and active against various microorganisms. Lab. acidophilus GP4A produced bacteriocin at maximum rate when grown in MRS broth(pH 6.5${\sim}$7.5) at$37^{\cric}C$ or $40^{\cric}C$. The bacteriocin produced by Lab. acidophilus GP4A inhibited the growth of Lactobacillus delbrueckii subsp. lactis 4794 in early logarithmic phase. The bacteriocin was purified by ammonium sulfate precipitation and Octyl sepharose CL-4B column chromatography. The purification resulted in a final yield of 21.7% and a 13.6-fold increase in the specific activity.

  • PDF

Purification and Properties of a Cysteinylglycinase from Proteus mirabilis (Proteus mirabilis가 생산하는 Cysteinylglycinase의 정제 및 성질)

  • Choi, Shin-Yang;Yu, Ju-Hyun;Hidehiko Kumagai;Tatsrokuro Tochikura
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.92-97
    • /
    • 1988
  • Cysteinylglycinase was partially purified from Proteus mirabilis by consecutive procedure. The specific activity was increased about 16-fold to that of cell-free extract. The enzyme was found rather unstable on ammonium sulfate precipitation ann the precipitated enzyme protein became partially insoluble during dialysis. The precipitated enzyme was found to be solubilized by treatment of 4% Triton X-100 effectiviely, The optimum temperature and pH of the enzyme activity were 35$^{\circ}C$ and 7.3, respectively. After heat treatment of the enzyme at 5$0^{\circ}C$ for 30 min, it lost the activity to 70%. The enzyme was stable at pH 7.0-8.0. The molecular weight of the cysteinylglycinase was found to be about 190,000 by Sephadex G-150 gel filtration. The enzyme was activated by the addition of Mn$^{2+}$ and $Mg^{2+}$ ions. The maximal activation was obtained in preincubation with $Mg^{2+}$ ion for 30 min. The enzyme catalyzed the hydrolysis of various dipeptides and tripeptides. The Km and Vmax values for cysteinylglycine were 1.60 mM and 0.24 m unit/ mg, respectively.

  • PDF

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.