• 제목/요약/키워드: special functions

검색결과 851건 처리시간 0.066초

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • Bulletin of the Korean Mathematical Society
    • /
    • 제54권6호
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

Operational Semantics for Instruction List with Functions (함수를 포함한 IL 언어의 실행적 의미구조)

  • Shin, Seung-Cheol;Rho, Sang-Hoon
    • The KIPS Transactions:PartA
    • /
    • 제14A권7호
    • /
    • pp.457-466
    • /
    • 2007
  • IEC61131-3 is the standard of control languages in which special purpose controllers and motion controllers such as PLC can be programmed. IL(Instruction List), one of the standard languages, is in assembly level but has some high-level features. This paper describes a formal semantics of IL in operational style. Previous works on IL semantics do not include functions and function blocks, which is not so practical. We define IL semantics including functions and function blocks.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • Honam Mathematical Journal
    • /
    • 제33권2호
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.

Numerical measures of Indicating Placement of Posets on Scale from Chains to Antichains

  • Bae, Kyoung-Yul
    • The Journal of Information Technology and Database
    • /
    • 제3권1호
    • /
    • pp.97-108
    • /
    • 1996
  • In this paper we obtain several function defined on finite partially ordered sets(posets) which may indicate constraints of comparability on sets of teams(tasks, etc.) for which evaluation is computationally simple, a relatively rare condition in graph-based algorithms. Using these functions a set of numerical coefficients and associated distributions obtained from a computer simulation of certain families of random graphs is determined. From this information estimates may be made as to the actual linearity of complicated posets. Applications of these ideas is to all areas where obtaining rankings from partial information in rational ways is relevant as in, e.g., team_, scaling_, and scheduling theory as well as in theoretical computer science. Theoretical consideration of special and desirable properties of various functions is provided permitting judgment concerning sensitivity of these functions to changes in parameters describing (finite) posets.

  • PDF

RELATION BETWEEN DEMYANOV DIFFERENCE AND MINKOWSKI DIFFERENCE OF CONVEX COMPACT SUBSETS IN $R^2$

  • Song, Chun-Ling;Xia, Zun-Quan;Zhang, Li-Wei;Li, Shu-Yang
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.353-359
    • /
    • 2007
  • A necessary and sufficient condition for Demyanov difference and Minkowski difference of compact convex subsets in $R^2$ being equal is given in this paper. Several examples are computed by Matlab to test our result. The necessary and sufficient condition makes us to compute Clarke subdifferential by quasidifferential for a special of Lipschitz functions.

MULTIOBJECTIVE SECOND-ORDER NONDIFFERENTIABLE SYMMETRIC DUALITY INVOLVING (F, $\alpha$, $\rho$, d)-CONVEX FUNCTIONS

  • Gupta, S.K.;Kailey, N.;Sharma, M.K.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1395-1408
    • /
    • 2010
  • In this paper, a pair of Wolfe type second-order nondifferentiable multiobjective symmetric dual program over arbitrary cones is formulated. Weak, strong and converse duality theorems are established under second-order (F, $\alpha$, $\rho$, d)-convexity assumptions. An illustration is given to show that second-order (F, $\alpha$, $\rho$, d)-convex functions are generalization of second-order F-convex functions. Several known results including many recent works are obtained as special cases.

Spherically symmetric transient responses of functionally graded magneto-electro-elastic hollow sphere

  • Wang, H.M.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.525-542
    • /
    • 2006
  • On the basis of equilibrium equations for static electric and magnetic fields, two unknown functions related to electric and magnetic fields were firstly introduced to rewrite the governing equations, boundary conditions and initial conditions for mechanical field. Then by introducing a dependent variable and a special function satisfying the inhomogeneous mechanical boundary conditions, the governing equation for a new variable with homogeneous mechanical boundary conditions is obtained. By using the separation of variables technique as well as the electric and magnetic boundary conditions, the dynamic problem of a functionally graded magneto-electro-elastic hollow sphere under spherically symmetric deformation is transformed to two Volterra integral equations of the second kind about two unknown functions of time. Cubic Hermite polynomials are adopted to approximate the two undetermined functions at each time subinterval and the recursive formula for solving the integral equations is derived. Transient responses of displacements, stresses, electric and magnetic potentials are completely determined at the end. Numerical results are presented and discussed.

HARMONIC CURVATURE FUNCTIONS OF SOME SPECIAL CURVES IN GALILEAN 3-SPACE

  • Yilmaz, Beyhan;Metin, Seyma;Gok, Ismail;Yayli, Yusuf
    • Honam Mathematical Journal
    • /
    • 제41권2호
    • /
    • pp.301-319
    • /
    • 2019
  • The aim of the paper is to characterize some curves with the help of their harmonic curvature functions. First of all, we have defined harmonic curvature function of an arbitrary curve and have re-determined the position vectors of helices in terms of their harmonic curvature functions in Galilean 3-space. Then, we have investigated the relation between rectifying curves and Salkowski (or anti-Salkowski) curves in Galilean 3-space. Furthermore, the position vectors of them are obtained via the serial approach of the curves. Finally, we have given some illustrated examples of helices and rectifying curves with some assumptions.

FEKETE-SZEGÖ INEQUALITIES OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS AND APPLICATIONS TO SOME DISTRIBUTION SERIES

  • SOUPRAMANIEN, T.;RAMACHANDRAN, C.;CHO, NAK EUN
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.725-742
    • /
    • 2021
  • The aim of this article is to estimate the coefficient bounds of certain subclasses of analytic functions. We claim that this is a novel and unique effort in combining the coefficient functional along with the new domains and the probability distributions which have not been found or are available in the literature of coefficients bounds. Here the authors analyze these bounds in the special domains associated with exponential function and sine function. Further we obtain Fekete-Szegö inequalities for the defined subclasses of analytic functions defined through Poisson distribution series and Pascal distribution series.