• Title/Summary/Keyword: speaker dependent

Search Result 139, Processing Time 0.026 seconds

A Study on Phoneme Recognition using Neural Networks and Fuzzy logic (신경망과 퍼지논리를 이용한 음소인식에 관한 연구)

  • Han, Jung-Hyun;Choi, Doo-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2265-2267
    • /
    • 1998
  • This paper deals with study of Fast Speaker Adaptation Type Speech Recognition, and to analyze speech signal efficiently in time domain and time-frequency domain, utilizes SCONN[1] with Speech Signal Process suffices for Fast Speaker Adaptation Type Speech Recognition, and examined Speech Recognition to investigate adaptation of system, which has speech data input after speaker dependent recognition test.

  • PDF

Voice Dialing System using Speaker Dependent Recognition for Korean Digit Speech (화자 종속 한국어 숫자음 음성 인식 다이얼링 시스템)

  • Park, Kee-Young;Shin, You-Shik;Kim, Chong-Kyo
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.56-62
    • /
    • 1999
  • This paper described a voice dialing system(VDS) and its hardware implementation for a speaker-dependent recognition of Korean digit speech using duty cycle. The proposed VDS consist of integrator, leveling divider circuit and recognition program. The analog speech signal is applied to the VDS through the low-pass filter cutoff frequency is 4.5(kHz). It is thoroughly confirmed that the speaker-dependent recognition of Korean digit speech is well behaved by the hardware system. Experimental results show that the recognition rate is 64% in average for Korean digit speech. Moreover, a high recognition rate of 100% is obtained for digits; /4/, /5/, /6/, /7/, /9/, /0/.

  • PDF

Speaker-dependent Speech Recognition Algorithm for Male and Female Classification (남녀성별 분류를 위한 화자종속 음성인식 알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.775-780
    • /
    • 2013
  • This paper proposes a speaker-dependent speech recognition algorithm which can classify the gender for male and female speakers in white noise and car noise, using a neural network. The proposed speech recognition algorithm is trained by the neural network to recognize the gender for male and female speakers, using LPC (Linear Predictive Coding) cepstrum coefficients. In the experiment results, the maximal improvement of total speech recognition rate is 96% for white noise and 88% for car noise, respectively, after trained a total of six neural networks. Finally, the proposed speech recognition algorithm is compared with the results of a conventional speech recognition algorithm in the background noisy environment.

A Semi-Noniterative VQ Design Algorithm for Text Dependent Speaker Recognition (문맥종속 화자인식을 위한 준비반복 벡터 양자기 설계 알고리즘)

  • Lim, Dong-Chul;Lee, Haing-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.67-72
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text dependent speaker recognition. In a concrete way, we present the non-Iterative method which makes a vector quantization codebook and this method Is nut Iterative learning so that the computational complexity is epochally reduced. The proposed semi-noniterative VQ design method contrasts with the existing design method which uses the iterative learning algorithm for every training speaker. The characteristics of a semi-noniterative VQ design is as follows. First, the proposed method performs the iterative learning only for the reference speaker, but the existing method performs the iterative learning for every speaker. Second, the quantization region of the non-reference speaker is equivalent for a quantization region of the reference speaker. And the quantization point of the non-reference speaker is the optimal point for the statistical distribution of the non-reference speaker In the numerical experiment, we use the 12th met-cepstrum feature vectors of 20 speakers and compare it with the existing method, changing the codebook size from 2 to 32. The recognition rate of the proposed method is 100% for suitable codebook size and adequate training data. It is equal to the recognition rate of the existing method. Therefore the proposed semi-noniterative VQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal.

Text-Dependent Speaker Recognition Using DTW and State-Dependent Parameter Weighting Method of HMM (DTW 와 HMM의 상태별 파라미터 가중 기법을 이용한 문맥 종속형 화자인식)

  • 이철희;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, the speaker-recognition process based on both DTW and discrete HMM was performed using the method to evaluate state-dependent parameter weighting from training data so as the personal audio-characteristics are to be well reflected. In the suggested method below, we found the optimal state sequence using the Viterbi algorithm. The optimal path could be evaluated after comparing the sequence of base pattern which already have, with that of the other patterns. After that the frame of which the pattern was matched with the base pattern in the same state are to be found so that the reference pattern can be gained by weighting on the numbers of matched frames.

  • PDF

An Enhanced Text-Prompt Speaker Recognition Using DTW (DTW를 이용한 향상된 문맥 제시형 화자인식)

  • 신유식;서광석;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • This paper presents the text-prompt method to overcome the weakness of text-dependent and text-independent speaker recognition. Enhanced dynamic time warping for speaker recognition algorithm is applied. For the real-time processing, we use a simple algorithm for end-point detection without increasing computational complexity. The test shows that the weighted-cepstrum is most proper for speaker recognition among various speech parameters. As the experimental results of the proposed algorithm for three prompt words, the speaker identification error rate is 0.02%, and when the threshold is set properly, false rejection rate is 1.89%, false acceptance rate is 0.77% and verification total error rate is 0.97% for speaker verification.

  • PDF

Speech Emotion Recognition Using Confidence Level for Emotional Interaction Robot (감정 상호작용 로봇을 위한 신뢰도 평가를 이용한 화자독립 감정인식)

  • Kim, Eun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.755-759
    • /
    • 2009
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Especially, speaker-independent emotion recognition is a challenging issue for commercial use of speech emotion recognition systems. In general, speaker-independent systems show a lower accuracy rate compared with speaker-dependent systems, as emotional feature values depend on the speaker and his/her gender. Hence, this paper describes the realization of speaker-independent emotion recognition by rejection using confidence measure to make the emotion recognition system be homogeneous and accurate. From comparison of the proposed methods with conventional method, the improvement and effectiveness of proposed methods were clearly confirmed.

A Study on Modified Clustering Algorithm for Text-Dependent Speaker Verification System (문장종속 화자확인 시스템을 위한 개선된 군집화 알고리즘에 관한 연구)

  • 강철호;정희석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.548-553
    • /
    • 2004
  • In this paper we propose modified LBG algorithm to minimize quantization errors. When we apply conventional LBG algorithm for speaker verification system, problems that result from small amount of training data can be generated. That is, quantization error comes from fixed-sized codebook without any consideration for speaker characteristics and splitting vector in the wrong direction worsen performance of speaker verification system. So, we propose modified clustering method that has variable sized codebook according to speaker characteristics and makes right splitting direction by finding the farthest member away from mean and then find another member from the member. Simulation results show effectiveness of the proposed algorithm.

Achieving Faster User Enrollment for Neural Speaker Verification Systems

  • Lee, Tae-Seung;Park, Sung-Won;Lim, Sang-Seok;Hwang, Byong-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.205-208
    • /
    • 2003
  • While multilayer perceptrons (MLPs) have great possibility on the application to speaker verification, they suffer from inferior learning speed. to appeal to users, the speaker verification systems based on MLPs must achieve a reasonable enrolling speed and it is thoroughly dependent on the fast learning of MLPs. To attain real-time enrollment on the systems, the previous two studies have been devoted to the problem and each satisfied the objective. In this paper the two studies are combined md applied to the systems, on the assumption that each method operates on different optimization principle. By conducting experiments using an MLP-based speaker verification system to which the combination is applied on real speech database, the feasibility of the combination is verified from the results of the experiments.

  • PDF

A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network (신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.

  • PDF