• Title/Summary/Keyword: spatiotemporal knowledge discovery

Search Result 6, Processing Time 0.042 seconds

A Knowledge Discovery Framework for Spatiotemporal Data Mining

  • Lee, Jun-Wook;Lee, Yong-Joon
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.124-129
    • /
    • 2006
  • With the explosive increase in the generation and utilization of spatiotemporal data sets, many research efforts have been focused on the efficient handling of the large volume of spatiotemporal sets. With the remarkable growth of ubiquitous computing technology, mining from the huge volume of spatiotemporal data sets is regarded as a core technology which can provide real world applications with intelligence. In this paper, we propose a 3-tier knowledge discovery framework for spatiotemporal data mining. This framework provides a foundation model not only to define the problem of spatiotemporal knowledge discovery but also to represent new knowledge and its relationships. Using the proposed knowledge discovery framework, we can easily formalize spatiotemporal data mining problems. The representation model is very useful in modeling the basic elements and the relationships between the objects in spatiotemporal data sets, information and knowledge.

A 3-Layered Framework for Spatiotemporal Knowledge Discovery (시공간 지식탐사를 위한 3계층 프레임워크)

  • 이준욱;남광우;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.205-218
    • /
    • 2004
  • As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.

Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects (이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사)

  • Lee, Jun-Wook;Nam, Kwang-Woo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1103-1114
    • /
    • 2003
  • Currently, one of the most critical issues in developing the service support system for various spatio-temporal applications is the discoverying of meaningful knowledge from the large volume of moving object data. This sort of knowledge refers to the spatiotemporal moving pattern. To discovery such knowledge, various relationships between moving objects such as temporal, spatial and spatiotemporal topological relationships needs to be considered in knowledge discovery. In this paper, we proposed an efficient method, MPMine, for discoverying spatiotemporal moving patterns. The method not only has considered both temporal constraint and spatial constrain but also performs the spatial generalization using a spatial topological operation, contain(). Different from the previous temporal pattern methods, the proposed method is able to save the search space by using the location summarization and generalization of the moving object data. Therefore, Efficient discoverying of the useful moving patterns is possible.

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • Vhan Vu Thi Hong;Chi Cheong-Hee;Ryu Keun-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

Discovery of Frequent Sequence Pattern in Moving Object Databases (이동 객체 데이터베이스에서 빈발 시퀀스 패턴 탐색)

  • Vu, Thi Hong Nhan;Lee, Bum-Ju;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.179-186
    • /
    • 2008
  • The converge of location-aware devices, GIS functionalities and the increasing accuracy and availability of positioning technologies pave the way to a range of new types of location-based services. The field of spatiotemporal data mining where relationships are defined by spatial and temporal aspect of data is encountering big challenges since the increased search space of knowledge. Therefore, we aim to propose algorithms for mining spatiotemporal patterns in mobile environment in this paper. Moving patterns are generated utilizing two algorithms called All_MOP and Max_MOP. The first one mines all frequent patterns and the other discovers only maximal frequent patterns. Our proposed approach is able to reduce consuming time through comparison with DFS_MINE algorithm. In addition, our approach is applicable to location-based services such as tourist service, traffic service, and so on.

Frequent Origin-Destination Sequence Pattern Analysis from Taxi Trajectories (택시 기종점 빈번 순차 패턴 분석)

  • Lee, Tae Young;Jeon, Seung Bae;Jeong, Myeong Hun;Choi, Yun Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2019
  • Advances in location-aware and IoT (Internet of Things) technology increase the rapid generation of massive movement data. Knowledge discovery from massive movement data helps us to understand the urban flow and traffic management. This paper proposes a method to analyze frequent origin-destination sequence patterns from irregular spatiotemporal taxi pick-up locations. The proposed method starts by conducting cluster analysis and then run a frequent sequence pattern analysis based on identified clusters as a base unit. The experimental data is Seoul taxi trajectory data between 7 a.m. and 9 a.m. during one week. The experimental results present that significant frequent sequence patterns occur within Gangnam. The significant frequent sequence patterns of different regions are identified between Gangnam and Seoul City Hall area. Further, this study uses administrative boundaries as a base unit. The results based on administrative boundaries fails to detect the frequent sequence patterns between different regions. The proposed method can be applied to decrease not only taxis' empty-loaded rate, but also improve urban flow management.