• Title/Summary/Keyword: spatial-temporal model

Search Result 796, Processing Time 0.036 seconds

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Spatial-Temporal Modelling of Road Traffic Data in Seoul City

  • Lee, Sang-Yeol;Ahn, Soo-Han;Park, Chang-Yi;Jeon, Jong-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2002
  • Recently, the demand of the Intelligent Transportation System(ITS) has been increased to a large extent, and a real-time traffic information service based on the internet system became very important. When ITS companies carry out real-time traffic services, they find some traffic data missing, and use the conventional method of reconstructing missing values by calculating average time trend. However, the method is found unsatisfactory, so that we develop a new method based the spatial and spatial-temporal models. A cross-validation technique shows that the spatial-temporal model outperforms the others.

  • PDF

Modeling and Implementation for Generic Spatio-Temporal Incorporated Information (시간 공간 통합 본원적 데이터 모델링 및 그 구현에 관한 연구)

  • Lee Wookey
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.35-48
    • /
    • 2005
  • An architectural framework is developed for integrating geospatial and temporal data with relational information from which a spatio-temporal data warehouse (STDW) system is built. In order to implement the STDW, a generic conceptual model was designed that accommodated six dimensions: spatial (map object), temporal (time), agent (contractor), management (e.g. planting) and tree species (specific species) that addressed the 'where', 'when', 'who', 'what', 'why' and 'how' (5W1H) of the STDW information, respectively. A formal algebraic notation was developed based on a triplet schema that corresponded with spatial, temporal, and relational data type objects. Spatial object structures and spatial operators (spatial selection, spatial projection, and spatial join) were defined and incorporated along with other database operators having interfaces via the generic model.

  • PDF

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

A Fuzzy Spatiotemporal Data Model and Dynamic Query Operations

  • Nhan, Vu Thi Hong;Kim, Sang-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.564-566
    • /
    • 2003
  • There are no immutable phenomena in reality. A lot of applications are dealing with data characterized by spatial and temporal and/or uncertain features. Currently, there has no any data model accommodating enough those three elements of spatial objects to directly use in application systems. For such reasons, we introduce a fuzzy spatio -temporal data model (FSTDM) and a method of integrating temporal and fuzzy spatial operators in a unified manner to create fuzzy spatio -temporal (FST) operators. With these operators, complex query expression will become concise. Our research is feasible to apply to the management systems and query processor of natural resource data, weather information, graphic information, and so on.

  • PDF

A Study on a Spatio-Temporal Data Model for Location-Based Service (위치 기반 서비스를 위한 시공간 데이터모델에 관한 연구)

  • Chung, Warn-Ill;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.2 s.10
    • /
    • pp.5-21
    • /
    • 2003
  • Sptaio-temporal databases are important to store the real-time location information of large spatio-temporal objects efficiently and retrieve them rapidly. Accordingly necessity for spatio-temporal database system that can manage spatial information, aspatial information and temporal information of spatio-temporal objects is increasing. Sptaio-temporal databases are important to store the real-time location information of large spatio-temporal objects efficiently and retrieve them rapidly. Accordingly necessity for spatio-temporal database system that can manage spatial information, aspatial information and temporal information of spatio-temporal objects is increasing. Therefore, in this paper, we propose a spatio-temporal data model that is able to efficiently manage historical spatio-temporal objects that change dynamically their states as time. Also, various spatio-temporal operations and constraint conditions are defined to keep integrity of spatio-temporal data and spatio-temporal operations.

  • PDF

Estimation of Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 산정방안)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.691-695
    • /
    • 2004
  • In recent years, mary studies for efact estimation of groudwater recharge has been performed. They can be categorized into three groups : analytical method by means of groundwater recession curve, water budget analysis based on watershed, and the method using groundwater model. Since groundwater recharge rate shows the spatial-temporal variability due to hydrogeological heterogeneity, existing studies have various limits to deal with these characteristics. The method of estimating daily recharge rate with spatial-temporal variation based on rainfall-runoff model is suggested in this study for this purpose. This method is expected to enhance existing indirect method by means of reflecting climatic conditions, land use and hydrogeological heterogeneity.

  • PDF

Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring (식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교)

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1209-1219
    • /
    • 2019
  • For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Analysis of Determinants of Farmland Price Using Spatio-temporal Autoregressive Model (시공간자기회귀모형을 이용한 농지가격 결정요인 분석)

  • Lee Kyeongok;Yi, Hyangmi;Kim, Yunsik;Kim Taeyoung
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Farmland transaction prices are affected by various factors such as politics, society, and the economy. The purpose of this study is to identify multiple factors that affect the farmland transaction price due to changes in the actual transaction price of farmland by farmland unit from 2016 to 2020. There are several previous studies analyzed the determinants of farmland transaction prices by considering spatial dependency. However, in the case of land transactions where the time and space of the transaction affect simultaneously, if only spatial dependence is considered, there is a limitation in that it cannot reflect spatial dependence that occurs over time. In order to solve these limitations, To address these limitations, this study builds a spatio-temporal autoregressive model that simultaneously considers spatial and temporal dependencies using farmland transactions in Jinju City as an example. As a result of the analysis, it was confirmed that there was significant spatio-temporal dependence in farmland transactions within the previous 30 days. This means that if the previous farmland transaction was carried out at a high price, it has a spatio-temporal spillover effect that indirectly affects the increase in the price of other nearby farmland transactions. The study also found that various location attributes and socioeconomic attributes have a significant impact on farmland transaction prices. The spatio-temporal autoregressive model of farmland prices constructed in this study can be used to improve the prediction accuracy of farmland prices in the farmland transaction market in the future, and it is expected to be useful in drawing policy implications for stabilizing farmland prices