• Title/Summary/Keyword: spatial variability

Search Result 585, Processing Time 0.026 seconds

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

Stochastic Finite Element Aalysis of Space Truss by Neumann Expansion Method (뉴우먼 확장법에 의한 3차원 트러스의 확률유한요소해석)

  • 정영수;김기정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.117-124
    • /
    • 1993
  • The Neumann Expansion method has been used for evaluating the response variability of three dimensional truss structure resulting from the spatial variability of material properties with the aid of the finite element method, and in conjunction with the direct Monte Carlo simulation methods. The spatial variabilites are modeled as three-dimensional stochastic field. Yamazaki 〔1〕 has extended the Neumann Expansion method to the plane-strain problem to obtain the response variability of 2 dimensional stochastic systems. This paper presents the extension of the Neumann Expansion method to 3 dimensional stochastic systems. The results by the NEM are compared with those by the deterministic finite element analysis and by the direct Monte Carlo simulation method

  • PDF

The Origin of Food Sources for Nuttallia olivacea and Nereidae by Fatty Acid Analysis (지방산을 이용한 Nuttallia olivacea 및 Nereidae의 먹이원에 관한 연구)

  • Shin, Woo-Seok;Kim, Boo-Gil
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1083-1092
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuary environment (Nanakita estuary, Japan) was investigated using fatty acid. Potential organic matter sources (terrestiral plants, macroalgae, benthic microalgae, dinflagellates and bacteria), sedimentary organic matters and benthic invertebrates (Nuttallia olivacea and Nereidae) were sampled in four locations with different tidal flat type. The main objective of the present study was to determine the origin of sediment and the food sources of N. olivacea and Nereidae along with small-scale spatial variability. The origin of sedimentary organic matters were mainly the fatty acid of bacteria and benthic microalgae. Especially, The organic matter of terrestrial plant origin was found the highest in station C. The diets of N. olivacea and Nereidae were found to be dominated by diatoms and terrestrial plants. Whereas, macroalgae and dinoflagellates showed little influence to benthic invertebrates. Moreover, according to principal component analysis, it is showed that benthic invertebrates in the same region are using the same food without relation with species. On the other hand, the N. olivacea and Nereidae of station D clearly contrasts with station B in terms of main food sources. From these results, it is suggested that food competition of benthic invertebrates revealed high a connection between small-scale spatial variability and food source in estuary.

Spatial Variability of Soil Heat Fluxes in a Conifer Forest (침엽수림에서 토양열 플럭스의 공간 변화)

  • Yun-Ho Park;Byong-Lyol Lee;Kyung-Sook Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • The spatial variability of soil heat fluxes in a conifer forest was investigated by meteorological measurement. The maximum daily averages of R $s_{dn}$ and Rn were about 260 W $m^{-2}$ and 180 W $m^{-2}$ . The daily average of G was typically 10% of net radiation during mid-July to mid-August. The measured soil heat flux of $G_{6}$ was suitable to calculate G within 2% error during the study period. A time delay in the maximum nux at a depth of 0.1 m by heat storage was observed. About 10 to 15 W $m^{-2}$ of error can occur, if it is neglected.

Reliability analysis of soil slope reinforced by micro-pile considering spatial variability of soil strength parameters

  • Yuke Wang;Haiwei Shang;Yukuai Wan;Xiang Yu
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.631-640
    • /
    • 2024
  • In the traditional slope stability analysis, ignoring the spatial variability of slope soil will lead to inaccurate analysis. In this paper, the K-L series expansion method is adopted to simulate random field of soil strength parameters. Based on Random Limit Equilibrium Method (RLEM), the influence of variation coefficient and fluctuation range on reliability of soil slope supported by micro-pile is investigated. The results show that the fluctuation ranges and the variation coefficients significantly influence the failure probability of soil slope supported by micro-pile. With the increase of fluctuation range of soil strength parameters, the mean safety factor of the slope increases slightly. The failure probability of the soil slope increases with the increase of fluctuation range when the mean safety factor of the slope is greater than 1. The failure probability of the slope increases by nearly 8.5% when the fluctuation range is increased from δv=2 m to δv =8 m. With the increase of the variation coefficient of soil strength parameters, the mean safety factor of the slope decreases slightly, and the probability of failure of soil slope increases accordingly. The failure probability of the slope increases by nearly 31% when the variation coefficient increases from COVc=0.2, COVφ=0.05 to COVc=0.5, COVφ=0.2.

Relationship between temporal variability of TPW and climate variables (가강수량의 변화패턴과 기후인자와의 상관성 분석)

  • Lee, Darae;Han, Kyung-Soo;Kwon, Chaeyoung;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Chang-suk
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Water vapor is main absorption factor of outgoing longwave radiation. So, it is essential to monitoring the changes in the amount of water vapor and to understanding the causes of such changes. In this study, we monitor temporal variability of Total Precipitable Water (TPW) which observed by satellite. Among climate variables, precipitation play an important part to analyze temporal variability of water vapor because it is produced by water vapor. And El $Ni{\tilde{n}}o$ is one of climate variables which appear regularly in comparison with the others. Through them, we analyze relationship between temporal variability of TPW and climate variable. In this study, we analyzed long-term change of TPW from Moderate-Resolution Imaging Spectroadiometer (MODIS) data and change of precipitation in middle area of Korea peninsula quantitatively. After these analysis, we compared relation of TPW and precipitation with El $Ni{\tilde{n}}o$. The aim of study is to research El $Ni{\tilde{n}}o$ has an impact on TPW and precipitation change in middle area of Korea peninsula. First of all, we calculated TPW and precipitation from time series analysis quantitatively, and anomaly analysis is performed to analyze their correlation. As a result, TPW and precipitation has correlation mostly but the part had inverse correlation was found. This was compared with El $Ni{\tilde{n}}o$ of anomaly results. As a result, TPW and precipitation had inverse correlation after El $Ni{\tilde{n}}o$ occurred. It was found that El $Ni{\tilde{n}}o$ have a decisive effect on change of TPW and precipitation.

Mapping the Spatial Distribution of Drainage Density Based on GIS (GIS 기반 유역 배수 밀도의 공간분포도 작성)

  • Kim, Joo-Cheol;Lee, Sang-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Drainage density, defined as the degree to which a landscape is dissected by streams, is a fundamental property of natural terrain that reflect the comprehensive morphologic response of watershed. In this study the spatial variability of drainage density is analyzed by statistical approach to it and its plotting method is proposed. Overland flow length is confirmed to be a highly variable spatial factor from the result of statistical analysis. Distribution map of drainage density based on spatial autocorrelation length in this study would be a superior tool to the classical definition of drainage density.

Benthic Organisms and Environmental Variability in Antarctica: Responses to Seasonal, Decadal and Long-term Change

  • Clarke, Andrew
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.433-440
    • /
    • 2001
  • Marine organisms in Antarctica live in an environment which exhibits variability in physical processes over a wide range of temporal scales, from seconds to millennia. This time scale tends to be correlated with the spatial scale over which a given process operates, though this relationship is influenced by biology. The way organisms respond to variability in the physical environment depends on the time-scale of that variability in relation to life-span. Short-term variations are perceived largely as noise and probably have little direct impact on ecology. Of much greater importance to organisms in Antarctica are seasonal and decadal variations. Although seasonality has long been recognised as a key feature of polar environments, the realization that decadal scale variability is important is relatively recent. Long-term change has always been a feature of polar environments and may be a key factor in the evolution of the communities we see today.

  • PDF

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

무심천 유역에 대한 지하수 함양량의 시공간적 변동성 분석

  • Jeong Il-Mun;Kim Nam-Won;Lee Jeong-U;Lee Byeong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to present the method for estimating groundwater recharge with temporal-spatial variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined for the period 2001 - 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff data at the outlet of the catchment. The results of temporal and spatial variations of recharge were presented, This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use changes.

  • PDF