• Title/Summary/Keyword: spatial prediction

Search Result 943, Processing Time 0.029 seconds

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.

Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution

  • Sun, Xiufang;Li, Jianbo;Lv, Zhiqiang;Dong, Chuanhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3598-3614
    • /
    • 2020
  • With the increase of motor vehicles and tourism demand, some traffic problems gradually appear, such as traffic congestion, safety accidents and insufficient allocation of traffic resources. Facing these challenges, a model of Spatio-Temporal Dilated Convolutional Network (STDGCN) is proposed for assistance of extracting highly nonlinear and complex characteristics to accurately predict the future traffic flow. In particular, we model the traffic as undirected graphs, on which graph convolutions are built to extract spatial feature informations. Furthermore, a dilated convolution is deployed into graph convolution for capturing multi-scale contextual messages. The proposed STDGCN integrates the dilated convolution into the graph convolution, which realizes the extraction of the spatial and temporal characteristics of traffic flow data, as well as features of road occupancy. To observe the performance of the proposed model, we compare with it with four rivals. We also employ four indicators for evaluation. The experimental results show STDGCN's effectiveness. The prediction accuracy is improved by 17% in comparison with the traditional prediction methods on various real-world traffic datasets.

Developing an User Location Prediction Model for Ubiquitous Computing based on a Spatial Information Management Technique

  • Choi, Jin-Won;Lee, Yung-Il
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • Our prediction model is based on the development of "Semantic Location Model." It embodies geometrical and topological information which can increase the efficiency in prediction and make it easy to manipulate the prediction model. Data mining is being implemented to extract the inhabitant's location patterns generated day by day. As a result, the self-learning system will be able to semantically predict the inhabitant's location in advance. This context-aware system brings about the key component of the ubiquitous computing environment. First, we explain the semantic location model and data mining methods. Then the location prediction model for the ubiquitous computing system is described in details. Finally, the prototype system is introduced to demonstrate and evaluate our prediction model.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

The Measurements of Locational Effects in Land Price Prediction with the Spatial Statistical Analysis (공간통계분석을 이용한 지가의 입지값 측정에 관한 연구)

  • 이지영;황철수
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.233-246
    • /
    • 2002
  • The purpose of this paper is to quantitatively measure the effect of location in evaluating the land value through the implementation of GIS coupled with spatial statistical analysis. We assumed that the hedonic price model, which was commonly used in modelling the land value, could not explain the spatial factor effectively. In order to add the spatial factor, the analysis of the spatial autocorrelation was used. The present project used 54 standard land price samples from 1421 parcel land values and applied Kriging to predict stochastically the unsampled values on the basis of spatial autocorrelation between location of vector data. This study confirms that the spatial variogram analysis has an advantage of predicting spatial dependence process and revealing the positive premium and the negative penality on location factor objectively.

  • PDF

Crime Incident Prediction Model based on Bayesian Probability (베이지안 확률 기반 범죄위험지역 예측 모델 개발)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Crime occurs differently based on not only place locations and building uses but also the characteristics of the people who use the place and the spatial structures of the buildings and locations. Therefore, if spatial big data, which contain spatial and regional properties, can be utilized, proper crime prevention measures can be enacted. Recently, with the advent of big data and the revolutionary intelligent information era, predictive policing has emerged as a new paradigm for police activities. Based on 7420 actual crime incidents occurring over three years in a typical provincial city, "J city," this study identified the areas in which crimes occurred and predicted risky areas. Spatial regression analysis was performed using spatial big data about only physical and environmental variables. Based on the results, using the street width, average number of building floors, building coverage ratio, the type of use of the first floor (Type II neighborhood living facility, commercial facility, pleasure use, or residential use), this study established a Crime Incident Prediction Model (CIPM) based on Bayesian probability theory. As a result, it was found that the model was suitable for crime prediction because the overlap analysis with the actual crime areas and the receiver operating characteristic curve (Roc curve), which evaluated the accuracy of the model, showed an area under the curve (AUC) value of 0.8. It was also found that a block where the commercial and entertainment facilities were concentrated, a block where the number of building floors is high, and a block where the commercial, entertainment, residential facilities are mixed are high-risk areas. This study provides a meaningful step forward to the development of a crime prediction model, unlike previous studies that explored the spatial distribution of crime and the factors influencing crime occurrence.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models (공간회귀모형을 이용한 대구경북 지역 단위면적당 아파트 매매가격 예측)

  • Lee, Woo Jung;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.561-568
    • /
    • 2015
  • In this study we predict apartment prices per unit in Daegu-Gyeongbuk areas by spatial lag and spatial error models, both of which belong to so-called spatial regression model. A spatial weight matrix is constructed by k-nearest neighbours method and then the models for the apartment prices in March, 2012 are fitted using the weight matrix. The apartment prices in March, 2013 are predicted by the fitted spatial regression models and then performances of two spatial regression models are compared by RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error).

A Study on the Analysis of Correlation Decay Distance(CoDecDist) Model for Enhancing Spatial Prediction Outputs of Spatially Distributed Wind Farms (풍력발전출력의 공간예측 향상을 위한 상관관계감소거리(CoDecDist) 모형 분석에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.80-86
    • /
    • 2015
  • As wind farm outputs depend on natural wind resources that vary over space and time, spatial correlation analysis is needed to estimate power outputs of wind generation resources. As a result, geographic information such as latitude and longitude plays a key role to estimate power outputs of spatially distributed wind farms. In this paper, we introduce spatial correlation analysis to estimate the power outputs produced by wind farms that are geographically distributed. We present spatial correlation analysis of empirical power output data for the JEJU Island and ERCOT ISO (Texas) wind farms and propose the Correlation Decay Distance (CoDecDist) model based on geographic correlation analysis to enhance the estimation of wind power outputs.