• 제목/요약/키워드: spatial precipitation

검색결과 522건 처리시간 0.031초

공간분석을 이용한 강원도 지역의 강수분포 분석 (II): 지속기간 및 재현기간별 확률강수량 분석 (Analysis of Precipitation Distribution in the region of Gangwon with Spatial Analysis (II): Analysis of Quantiles with Interested Durations and Return Periods)

  • 정창삼;엄명진;허준행
    • 한국방재학회 논문집
    • /
    • 제9권6호
    • /
    • pp.99-109
    • /
    • 2009
  • 본 연구에서는 강원도내 정확한 극치강수분포를 파악하여 최근 증가하고 있는 재해를 예방하고자 지역빈도해석 방법을 이용하여 산정한 확률강수량과 공간분석을 통하여 강원도의 강수분포를 분석하였다. 강수자료는 강원도내 기상청 관할의 66개 관측소의 자료를 사용하였다. 지역빈도해석결과 GLO 분포형이 강원도에 가장 적합한 분포형으로 나타났다. 강수분포를 지속기간별로 분석한 결과 지속기간이 증가할수록 설악동, 대관령 및 청일 일원에서 높은 확률강수량을 나타내었으며, 지속기간에 따라서 강수의 공간분포가 확연히 변화됨을 확인하였다. 또한 재현기간별로 분석한 결과 재현기간이 길어질수록 지역별 강수 특성이 강하게 나타났다. 강원도 강수분포를 공간분석한 결과 영동지방에서는 일관적으로 높은 강수량이 발생하였으나 영서지방에서는 지속기간 및 재현기간에 따라 다양한 분포를 나타내었다. 따라서 지역별 강수량의 보다 정확한 예측을 위해서는 지역빈도해석 이외에 다양한 지리 및 기상조건을 고려할 수 있는 모형에 대한 연구가 필요할 것으로 판단된다.

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

EOF와 CSEOF를 이용한 한반도 강수의 변동성 분석 (Investigation of Korean Precipitation Variability using EOFs and Cyclostationary EOFs)

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1260-1264
    • /
    • 2009
  • Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.

  • PDF

미계측 관측 강수 자료 생성을 통한 제주도 지역의 수문총량 추정 (Estimating the Total Precipitation Amount with Simulated Precipitation for Ungauged Stations in Jeju Island)

  • 김남원;엄명진;정일문;허준행
    • 한국수자원학회논문집
    • /
    • 제45권9호
    • /
    • pp.875-885
    • /
    • 2012
  • 본 연구에서는 미계측 강수자료를 생성하여 공간 해석함으로써 제주도의 정확한 수문총량을 산정하였다. 미계측 강수자료는 본 연구에서 제시된 수정된 다중회귀선형 모형으로 생성하였으며 공간강수량은 PRISM을 적용하여 구하였다. 수정된 다중선형회귀 모형에 의한 미계측 강수자료의 추정 값들은 기존의 강수 패턴과 유사한 양상을 나타내어 모형의 정확도가 우수한 것으로 나타났으며, 공간강수량의 해석결과는 Case 1(원자료)과 Case 2(미계측 강수자료를 보완한 자료)의 연평균 강수량이 약 1.5%의 미미한 차이를나타내었으나 고도별 연평균 강수량 차이는 최대 37.4%가 증가하는 것으로 산정되었다. 따라서 본 연구에서 제안한 미계측 관측 자료 생성방법은 현재 관측소의 밀도가 낮은 곳과 국지적으로 강수량의 변화가 큰 곳에서의 수문총량의 산정시 유용할 것으로 판단된다.

충청지역 극한강우지수의 시공간적 경향과 변동성 분석 (Analysis of Spatial-temporal Variability and Trends of Extreme Precipitation Indices over Chungcheong Province, South Korea)

  • Bashir, Adelodun;Golden, Odey;Seulgi, Lee;Kyung Sook, Choi
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.101-112
    • /
    • 2022
  • Extreme precipitation events have recently become a leading cause of disasters. Thus, investigating the variability and trends of extreme precipitation is crucial to mitigate the increasing impact of such events. Spatial distribution and temporal trends in annual precipitation and four extreme precipitation indices of duration (CWD), frequency (R10 mm), intensity (Rx1day), and percentile-based threshold (R95pTOT) were analyzed using the daily precipitation data of 10 observation stations in Chungcheong province during 1974-2020. The precipitation at all observation stations, except the Boryeong station, showed nonsignificant increasing trends at 95% confidence level (CL) and increasing magnitudes from the west to east regions. The high variability in mean annual precipitation was more pronounced around the northeast and northwest regions. Similarly, there were moderate to high patterns in extreme precipitation indices around the northeast region. However, the precipitation indices of duration and frequency consistently increased from the west to east regions, while those of intensity and percentile-based threshold increased from the south to east regions. Nonsignificant increasing trends dominated in CWD, R10 mm, and Rx1day at all stations, except for R10 mm at Boeun station and Rx1day at Cheongju and Jecheon stations, which showed a significantly increasing trend. The spatial distribution of trend magnitude shows that R10 mm increased from the west to east regions. Furthermore, variations in precipitation were very strongly correlated (99% CL) with R10 mm, Rx1day, and R95pTOT at all stations, except with wR10 mm at Cheongju station, which was strongly correlated with a 95% CL.

Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds

  • Jang, S.;Hwang, M.;Hur, Y. T.;Yi, J.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.738-739
    • /
    • 2015
  • The main objective of this study, "Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds", is to carry out over Han River and Imjin River watersheds. To this end, a statistical regression method with MOS (Model Output Statistics) corrections at every downscaling step was developed and applied for downscaling the spatially-coarse Global Climate Model Projections (GCMPs) from CCSM3 and CSIRO with respect to precipitation into 0.1 degree (about 11 km) spatial grid over study regions. The spatially archived hydro-climate data sets such as Willmott, GsMap and APHRODITE datasets were used for MOS corrections by means of monthly climatology between observations and downscaled values. Precipitation values downscaled in this study were validated against ground observations and then future climate simulation results on precipitation were evaluated for the projections.

  • PDF

가강수량의 변화패턴과 기후인자와의 상관성 분석 (Relationship between temporal variability of TPW and climate variables)

  • 이다래;한경수;권채영;이경상;서민지;최성원;성노훈;이창석
    • 대한원격탐사학회지
    • /
    • 제32권3호
    • /
    • pp.331-337
    • /
    • 2016
  • 수증기는 지구 장파 복사에너지의 주요 흡수인자이다. 따라서 수증기량의 변화를 모니터링하고 변화의 원인을 세밀하게 조사하는 것은 필수적이다. 본 연구에서는 위성관측에 의해 얻어지는 Total Precipitable Water (TPW)자료를 사용하여 가강수량의 변화패턴을 모니터링 하고자 한다. 또한 기후인자들 중 수증기를 통해 생성되어 수증기의 변화패턴을 분석하는데 있어 중요한 역할을 하는 강수량과 다른 기후인자들에 비해 비교적 주기적으로 나타나는 엘니뇨를 통해 가강수량의 변화패턴과 기후인자와의 상관성분석을 실시하고자 한다. 본 연구에서는 TERRA/AQUA 위성의 Moderate-Resolution Imaging Spectroadiometer (MODIS) 센서를 통해 관측된 TPW의 장기적인 변화와 한반도 중남부지방의 강수량변화를 정량적으로 분석하고, 이들의 관계를 엘니뇨와 함께 비교하였다. 이를 통해 엘니뇨의 발생이 한반도 중남부지방의 강수량과 TPW의 변화에 영향을 주고 있는 지에 대해 조사하고자 한다. 먼저, 시계열 분석을 통해 TPW와 중남부지방 강수량의 변화를 정량적으로 산출하고 anomaly분석을 통해 이들의 변화를 세밀하게 분석한 결과 서로 반대의 양상을 띠는 부분이 발견되어 엘니뇨의 anomaly분석결과와 비교하였다. 그 결과 대부분 같은 양상을 띠고 있던 TPW와 강수량이 엘니뇨가 발생한 후 서로 반대의 양상을 띠는 것을 확인하였다.

공간분석을 이용한 강원도 지역의 강수분포 분석 (I): 강수지역 구분과 계절별 및 연평균 강수량 분석 (Analysis of Precipitation Distribution in the region of Gangwon with Spatial Analysis (I): Classification of Precipitation Zones and Analysis for Seasonal and Annual Precipitation)

  • 엄명진;정창삼;조원철
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.103-113
    • /
    • 2009
  • 본 연구에서는 관측소의 지리적 위치 및 강수특성(월별, 계절별, 연평균)을 이용하여 강원도의 강수지역을 구분하였다. 강수지역 구분은 기상관측소 66개소(기상관서: 11개소, 자동기상시스템(AWS): 55개소)의 자료를 이용하였으며, 통계적 방법 중 군집 기법인 K-means 방법을 적용하였다. 지역구분 결과, 강수지역은 5개 지역(영동지방 1개 지역 및 영서지방 4개 지역)으로 구분하였다. 계절별 평균강수량은 봄에는 강원도 전체에 유사하게 발생하였으며, 여름에는 영서지방이 높게 나타났으며, 가을과 겨울에는 영동지방이 높게 발생하였다. 연평균 강수량 및 여름철 강수량의 공간분석 결과 강원도 중 일부 지역(미시령 및 대관령일원)은 산악형 강수 특성을 나타냈으나 전반적인 현상은 아닌 것으로 판단되었다. 그러나 보다 정확한 분석을 위해서는 관측소의 고도별 분포가 미흡한 것으로 나타난 관측소의 보완 및 AWS의 자료 확충이 필요할 것으로 판단된다.