• Title/Summary/Keyword: spatial interpolation

Search Result 411, Processing Time 0.046 seconds

Mapping of Environmental Data Using Spatial Interpolation Methods (공간보간기법을 이용한 환경자료의 지도화)

  • Cho, Hong-Lae;Jeong, Jong-Chul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.273-279
    • /
    • 2007
  • 환경분야에서 사용되는 대부분의 자료는 공간상 모든 위치에 그 값이 존재하나 모든 지점에서 자료를 획득하는 것이 불가능하므로 몇 개의 대표 지점에서 필요로 하는 자료를 수집한 후 이를 미관측 지역까지 확장하여 사용하게 된다. 관측된 자료를 이용하여 미관측 지점의 값을 예측하는 과정에는 공간보간 기법이 사용되는데, 본 논문에서는 지역경향면 모델, IDW, RBF, 크리깅 등의 공간보간 기법을 서울시의 미세먼지(PM10) 연평균 농도 공간보간에 적용하고 그 정확성을 살펴보았다. 정확성 평가를 위하여 예측값의 범위, RMSE, 평균오차 등을 살펴보았으며 이로부터 크리깅, RBF 기법의 예측 정확도가 높은 것으로 분석되었다.

  • PDF

Accuracy analysis of SPOT Orbit Modeling Using Orbit-Attitude Models (궤도기반 센서모델을 이용한 SPOT 위성 궤도모델링 정확도 분석)

  • Kim, Hyun-Suk;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.27-36
    • /
    • 2006
  • Conventionally, in order to get accurate geolocation of satellite images we need a set of ground control points with respect to individual scenes. In this paper, we tested the possibilities of modeling satellite orbits from individual scenes by establishing a sensor model for one scene and by applying the model, which was derived from the same orbital segment, to other scenes that has been acquired from the same orbital segment. We investigated orbit-attitude models with several interpolation methods and with various parameter sets to be adjusted. We used 7 satellite images of SPOT-3 with a length of 420km and ground control points acquired from GPS surveying. Results of the conventional individual scene modeling hardly introduced differences among different interpolation methods and different adjustment parameter sets. As the results of orbit modeling, the best model was the one with Lagrange interpolation for position/velocity and linear interpolation for attitude and with position/angle bias as parameter sets. The best model showed that it is possible to model orbital segments of 420km with ground control points measured within one scene (60km).

  • PDF

The Analysis of Chloride Ion of Ground Water in the West Coast District of Jeollabuk-Do using Spatial Interpolation (공간보간법을 이용한 전라북도 서해안 지역의 지하수 염소이온 분석)

  • Lee, Geun-Sang;Im, Dong-Gil;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, the data that examined the chloride ion concentration of ground water wells in the west coast of Jeollabukdo applying the GIS spatial estimation method were analyzed. In particular, through the designation of a validation point among ground water wells and then the analysis of error characteristics of the chloride ion concentration by each method of IDW (Inverse Distance Weight), Spline, and Kriging Interpolation method which is proper for estimating salt water intrusion was selected. The main conclusion from this study is as follows. First, as a result of analyzing the error characteristics of various spatial estimation methods by using the data from the chloride ion concentration of 485 ground water wells, the IDW method was found to be the most appropriate for estimating chloride ion concentration by salt water intrusion. Second, analyzing the average chloride ion concentration of the targeted regions has revealed that Gunsan-si with the record of $541mg/{\ell}$ did not meet water quality standards even for industrial use. Both Gimje-si and Gochang-gun satisfied drinking water quality standards and Buan-gun with $272mg/{\ell}$ was slightly below the standards for drinking water. Third, concerning the results of analysis according to administrative districts, as the areas adjacent to the west coast such as Daemyeong-dong, Joong-dong, Jangjae-dong and Guemam-dong in Gunsan-si are found to have very high chloride ion concentration, and both Hoehyeon-myeon and Daeya-myeon bounded by the Mankeong river did not meet water quality standards even for industrial use. From these facts, it is concluded that salt water intrusion has a great effect on Gunsan-si generally.

Analysis of Precision of Interpolation of Reservoir bed Through Comparison of Data Acquired by Using UAV and Echo Sounder (UAV와 Echo Sounder 취득 자료의 비교를 통한 저수지 하상의 공간 보간별 정확도 분석)

  • Roh, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.85-99
    • /
    • 2020
  • Reservoir is an important infrastructure of our society because it can store immense amount of water for various usages - manufacturing, agriculture, drinking, power generation, tourism etc. For maintenance of reservoir, various efforts in administrative and technological aspects are periodically conducted and monitoring the conditions of reservoir bed is the first priority for maintenance of reservoir. To check the conditions of reservoir bed, we measured depth of reservoir by using echo sounder, which is relatively reliable, prior to discharging of stored water and surveyed topography of reservoir by using UAV after discharging of water. Then, we conducted interpolation of measured depth of water by means of inverse distance weighting interpolation, Kriging interpolation, minimum curvature interpolation and radial basis function interpolation and calculated the volume of reservoir for each interpolation method. We compared the calculated volume of reservoir with the volume of water calculated by UAV after discharging of water and found the following results: First, as results of the above processes, we found that the Kriging interpolation was 97% correct in measurement of the volume of reservoir. Second, as results of comparison of differences between topographical areas and interpolated areas after selection of cross section for comparison, Kriging interpolation was found to have the most similar configuration with the topographical configuration by showing the least difference in the area of cross section. Therefore, it is determined that the optimal modeling of reservoir bed with the water depth data measured by echo sounder shall provide basic information for efficient maintenance of reservoir.

Image Magnification Using Median Filter and Spatial Variation (메디안 필터와 공간 변화량을 이용한 영상 확대)

  • Kwak, Nae-Joung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.72-80
    • /
    • 2007
  • Image magnification is the estimation of a few pixel in images with high quality from a pixel of an image with low resolution and there have been studied many techniques to make images with high quality. In this paper, we propose an image interpolation method using median filter and spatial information. The proposed method makes an interpolating pixel using an average value of a median filtered value and an average value of two pixels correlated with an interpolating pixel tightly. Also we make the magnified image with improved quality to add the directional information of surrounding pixels and the characteristic of ones using average value and max value of spatial variation. We evaluate the performance using PSNR in the quality of enlarged image comparing the proposed method with existing methods. The results show the proposed method improves PSNR than the existing methods and make images preserving the characteristic of original imges.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data (구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.5
    • /
    • pp.614-630
    • /
    • 2006
  • Improved estimates of populations at risk for quick and effective response to natural and man-made disasters require spatial disaggregation of zonal population data because of the spatial mismatch problem in areal units between census and impact zones. This paper implements a dasymetric surface model to facilitate spatial disaggregation of the population of a census block group into populations associated with each constituent pixel and evaluates the performance of the surface-based spatial disaggregation model visually and statistically. The surface-based spatial disaggregation model employed geographic information systems (GIS) to enable dasymetric interpolation to be guided by satellite-derived land use and land cover data as additional information about the geographic distributor of population. In the spatial disaggregation, percent cover based empirical sampling and areal weighting techniques were used to objectively determine dasymetric weights for each grid cell. The dasymetric population surface for the Atlanta metropolitan area was generated by the surface-based spatial disaggregation model. The accuracy of the dasymetric population surface was tested on census counts using the root mean square error (RMSE) and an adjusted RMSE. The errors related to each census track and block group were also visualized by percent error maps. Results indicate that the dasymetric population surface provides high-precision estimates of populations as well as the detailed spatial distribution of population within census block groups. The results also demonstrate that the population surface largely tends to overestimate or underestimate population for both the rural and forested and the urban core areas.

  • PDF

Performance Comparison of Reconstruction Algorithms for Fan-Beam Computerized Tomography (Fan-Beam CT 영상 재구성 알고리즘 성능 비교)

  • 이상철;조민형;이수열
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • In this paper, we have compared the direct fan-beam reconstruction method with the rebinning method in terms of computation time and spatial resolution using computer simulation. As a result, the direct fan-beam method is superior to the rebinning method in the spatial resolution though the former needs longer computation time. However, if we adopt the quarter-detector-offset technique to improve the spatial resolution, the rebinning method outperforms the direct fan-beam method. The computation times have been evaluated using the fast algorithms optimized to reduce the number of interpolation calculations at the back-projection, and the spatial resolutions have been compared using the computer generated phantoms.

  • PDF