• Title/Summary/Keyword: spatial error model

Search Result 436, Processing Time 0.023 seconds

Development and Validation of Multi-Purpose Geostatistical Model with Modified Kriging Method (수정된 Kriging법을 응용한 다목적지구통계모델의 개발 및 타당성 검토)

  • Kim, In-Kee;Sung, Won-Mo;Jung, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.207-215
    • /
    • 1993
  • In modem petroleum reservoir engineering, the characterization of reservoir heterogeneities is very important to accurately understand and predict reservoir production performance. Formation evaluation for the description of reservoir is generally conducted by performing the analysis of well logging, core testing, and well testing. However, the measured data points by well logging or core testing are in general very sparse and hence reservoir properties should be interpolated and extrapolated from measured points to uncharacterized areas. In assigning the data for the unknown points, simple averaging technique is not feasible as optimum estimation method since this method does not account the spatial relationship between the data points. The main goal of this work is to develop PC-version of multi-purpose geostatistical model in which several stages are systematically proceeded. In the development of model, the simulator employs a automatic selection of semivariogram function such as exponential or spherical model with the best values of $R^2$. The simulator also implements a special algorithm for the fitting of semivariogram function to experimental sernivariogram. The special algorithm such as trial and error scheme is devised since this method is much more reliable and stable than Gauss-Newton method. The simulator has been tested under stringent conditions and found to be stable. Finally, the validity and the applicability of the developed model have been studied against some existing actual field data.

  • PDF

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning (딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득)

  • Nam, Chunghee
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

Mutual Verification of an Analytic Model of a Complex System and Space Syntax Using Network Analyses (네트워크 분석방식 선택에 따른 복잡계 모형과 공간구문론의 상호검증)

  • Kim, Suk-Tae;Yoon, So-hee
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.3
    • /
    • pp.45-54
    • /
    • 2017
  • A social phenomenon that occurs in a physical space is said to be a complex system. However, space syntax, which is commonly employed by researchers to identify such social phenomena, has various limitations in interpreting their complexity. On the other hand, agent-based modeling considers a variety of factors including the personality of the agent, objective-oriented work flows, estimation according to time flows and better prediction of space use through diverse parameters depending the situation, as well as the characteristics of the space. The agent-based method thus has the potentials to be developed as an alternative to space syntax techniques. In particular, discrete event driven simulation(DEVS), which is part of the agent-based modeling method, embraces the concept of networks just like space syntax, which allows a possible theoretical linkage in the future. This study suggests a procedural model of agent-based DEVS reflecting two different connection methods, i.e. connections between adjacent areas and those of the entire space, and attempts to identify the relationship between the local and regional indices of space syntax. A number of spaces were selected as examples-one for a preliminary experiment and eight modified for the main experiment-and space syntax and DEVS were applied to each of them. The comparative analysis of the results led to the conclusions as follows: 1) Adjacent connections were closely related to local indices, while the whole-space approach to regional indices. Local integration shows both characteristics. 2) Observation of the time flow model indicated a faster convergence with the range of 1 to 3-fold of the total time of one lap, with the error of less than 10%. 3) The heat map analysis showed more obvious characteristics of using the space for the entire space rather than adjacent connections. 4) Space syntax shows higher eligibility than ABM.

SG-RBAC : Role Based Access Control Model for Smart Grid Environment (SG-RBAC : 스마트그리드 환경에 적합한 역할기반접근제어 모델)

  • Lee, Woomyo;Lee, Gunhee;Kim, Sinkyu;Seo, Jungtaek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.2
    • /
    • pp.307-318
    • /
    • 2013
  • Smart grid is composed of variable domains including different systems, and different types of the access control are needed in the multiple domain. Therefore, the access control model suitable for the smart grid environment is required to minimize access control error and deny the unauthorized access. This paper introduce the access control requirements in the smart grid environment and propose the access control model, SG-RBAC, satisfied with the requirements. SG-RBAC model imposes constraints on the access right activation according to the user property, the role property, and the system property. It also imposes constraints on the delegation and the inheritance of access right according to temporal/spatial information and a crisis occurrence.

Measuring and Modeling the Spectral Attenuation of Light in the Yellow Sea

  • Gallegos, Sonia-C.;Sandidge, Juanita;Chen, Xiaogang;Hahn, Sangbok-D.;Ahn, Yu-Hwan;Iturriaga, Rodolfo;Jeong, Hee-Dong;Suh, Young-Sang;Cho, Sung-Hwam
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • Spectral attenuation of light and upwelling radiance were measured in the western coast of Korea on board the R/V Inchon 888 of the Korean National Fisheries Research and Development Institute(NFRDI) during four seasons. The goal of these efforts was to determine the spatial and temporal distribution of the inherent and apparent optical properties of the water, and the factors that control their distribution. Our data indicate that while stratification of the water column, phytoplankton, and wind stress determined the vertical distribution of the optical parameters offshore, it was the tidal current and sediment type that controlled both the vertical and horizontal distribution in the coastal areas. These findings led to the development of a model that estimates the spectral attenuation of light with respect to depth and time for the Yellow Sea. The model integrates water leaving radiance from satellites, sediment types, current vectors, sigma-t, bathymetry, and in situ optical measurements in a learning algorithm capable of extracting optical properties with only knowledge of the environmental conditions of the Yellow Sea. The performance of the model decreases with increase in depth. The mean absolute percentage error (MAPE) of the model is 2% for the upper five meters, 8-10% between 6 and 50 meters, and 15% below 51 meters.

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.