• Title/Summary/Keyword: spatial data mining

Search Result 169, Processing Time 0.033 seconds

Understanding Facility Management on Tunnel through Text Mining of Precision Safety Diagnosis Data (터널시설물 점검진단 데이터의 텍스트마이닝 분석을 통한 유형별·지역별 중점 유지관리요소의 이해)

  • Seo, Jeong-eun;Oh, Jintak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

Location Generalization Method of Moving Object using $R^*$-Tree and Grid ($R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.231-242
    • /
    • 2007
  • The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on $R^*$-Tree and Area Grid Hash Table(AGHT) in preprocessing stage of pattern mining.

  • PDF

Spatial and Temporal Analysis of Land-use Changes Associated with Past Mining in the Kitakyushu District, Japan

  • Rhee, Sungsu;Ling, Marisa Mei;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.40-49
    • /
    • 2013
  • In the beginning of $20^{th}$ century, the coal mining industry had an important role in Japan at which two-thirds of the coal product came from the Kitakyushu-Chikuho District (KCD). As a consequence of mining activities, land-use condition in this district showed notable changes. This paper presented a study of land-use changes in coal mining area by characterizing land-use pattern transition over the last 100 years. In order to carry out the rigorous analysis of land-use, a series of land-use maps over the last 100 years was developed using geographic information systems (GIS). The historic topographic map and another available old data were used to investigate the long-term changes of land-use associated with past mining within the GIS platform. The results showed that the utilization of a series of developed land-use maps successfully indicated the difference of land-use pattern in the KCD before and after the peak of mining activities. The general findings from land-use analysis described that forest and farm lands were lost and turned into abandoned sites in the last 100 years.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF

Design and Implementation of Spatial Characterization System using Density-Based Clustering (밀도 클러스터링을 이용한 공간 특성화 시스템 설계 및 구현)

  • You Jae-Hyun;Park Tae-Su;Ahn Chan-Min;Park Sang-Ho;Hong Jun-Sik;Lee Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.43-52
    • /
    • 2006
  • LRecently, with increasing interest in ubiquitous computing, knowledge discovery method is needed with consideration of the efficiency and the effectiveness of wide range and various forms of data. Spatial Characterization which extends former characterization method with consideration of spatial and non-spatial property enables to find various form of knowledge in spatial region. The previous spatial characterization methods have the problems as follows. Firstly, former study shows the problem that the result of searched knowledge is unable to perform the multiple spatial analysis. Secondly, it is unable to secure the useful knowledge search since it searches the limited spatial region which is allocated by the user. Thus, this study suggests spatial characterization which applies to density based clustering.

  • PDF

Effective Utilization of Data based on Analysis of Spatial Data Mining (공간 데이터마이닝 분석을 통한 데이터의 효과적인 활용)

  • Kim, Kibum;An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2013
  • Data mining is a useful technology that can support new discoveries based on the pattern analysis and a variety of linkages between data, and currently is utilized in various fields such as finance, marketing, medical. In this paper, we propose an effective utilization method of data based on analysis of spatial data mining. We make use of basic data of foreigners living in Seoul. However, the data has some features distinguished from other areas of data, classification as sensitive information and legal problem such as personal information protection. So, we use the basic statistical data that does not contain personal information. The main features and contributions of the proposed method are as follows. First, we can use Big Data as information through a variety of ways and can classify and cluster Big Data through refinement. Second. we can use these kinds of information for decision-making of future and new patterns. In the performance evaluation, we will use visual approach through graph of themes. The results of performance evaluation show that the analysis using data mining technology can support new discoveries of patterns and results.

Computing The Spatial Skyline (Spatial Skyline을 계산하는 기하 알고리즘)

  • Son, Wan-Bin;Ahn, Hee-Kap;Hwang, Seung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.588-591
    • /
    • 2008
  • 본 논문은 Data mining에서 선호도 분석 등에 사용되는 Skyline Query[2] 중 자료의 속성에 spatial한 성질이 있을 때 사용할 수 있는 Spatial Skyline Query[3] 문제에 대해 연구한다. 우선 Spatial Skyline 집합을 추출하기 위한 기존의 알고리즘의 문제점을 짚어보고 보다 개선된 알고리즘을 제시한다. 또한 전체 Spatial Skyline 집합이 아닌 그 중 더 의미 있을 수 있는 부분 집합을 좀 더 빠른 시간 복잡도에 구하는 방법 또한 제시한다.

  • PDF

A Spatial Entropy based Decision Tree Method Considering Distribution of Spatial Data (공간 데이터의 분포를 고려한 공간 엔트로피 기반의 의사결정 트리 기법)

  • Jang, Youn-Kyung;You, Byeong-Seob;Lee, Dong-Wook;Cho, Sook-Kyung;Bae, Hae-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.643-652
    • /
    • 2006
  • Decision trees are mainly used for the classification and prediction in data mining. The distribution of spatial data and relationships with their neighborhoods are very important when conducting classification for spatial data mining in the real world. Spatial decision trees in previous works have been designed for reflecting spatial data characteristic by rating Euclidean distance. But it only explains the distance of objects in spatial dimension so that it is hard to represent the distribution of spatial data and their relationships. This paper proposes a decision tree based on spatial entropy that represents the distribution of spatial data with the dispersion and dissimilarity. The dispersion presents the distribution of spatial objects within the belonged class. And dissimilarity indicates the distribution and its relationship with other classes. The rate of dispersion by dissimilarity presents that how related spatial distribution and classified data with non-spatial attributes we. Our experiment evaluates accuracy and building time of a decision tree as compared to previous methods. We achieve an improvement in performance by about 18%, 11%, respectively.