• Title/Summary/Keyword: spatial conformation

Search Result 6, Processing Time 0.017 seconds

A Study on the Dynamic Instability Characteristics of Latticed Dome Under STEP Excitations (STEP 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • The space frame structure is one of the large span structural system consisting of longitudinal and latitudinal members. The members are connected in three dimension. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability under STEP Excitations behavior according to rise-span ratio(${\mu}$) and shape imperfection.

A Study on the Dynamic Instability Characteristics of Latticed Domes Under Sinusoidal Excitations (정현파 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Kang, Joo-Won;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.109-118
    • /
    • 2012
  • Few paper deal with the dynamic bucking under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability behavior according to rise-span ratio(${\mu}$) and shape imperfection.

Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents

  • Tian, Xuemei;Zhang, Suoqin;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli

  • Wu, Yanyan;Ma, Yongkai;Li, Laihao;Yang, Xianqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • An antioxidant peptide derived from Pinctada fucata meat using an Alcalase2.4L enzymatic hydrolysis method (named AOP) and identified by LC-TOF-MS has promising clinical potential for generating cosmetic products that protect skin from sunshine. To date, there have been few published studies investigating the structure-activity relationship in these peptides. To prepare antioxidant peptides better and improve their stability, the design and expression of an antioxidant peptide from Pinctada fucata (named DSAOP) was studied. The peptide contains a common precursor of an expression vector containing an ${\alpha}$-helix tandemly linked according to the BamHI restriction sites. The DNA fragments encoding DSAOP were synthesized and subcloned into the expression vector pET-30a (+), and the peptide was expressed mostly as soluble protein in recombinant Escherichia coli. Meanwhile, the DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity of DSAOP $IC_{50}$ values were $0.136{\pm}0.006$, $0.625{\pm}0.025$, and $0.306{\pm}0.015mg/ml$, respectively, with 2-fold higher DPPH radical scavenging activity compared with chemosynthesized AOP (p < 0.05), as well as higher superoxide radical scavenging activity compared with natural AOP (p < 0.05). This preparation method was at the international advanced level. Furthermore, pilot-scale production results showed that DSAOP was expressed successfully in fermenter cultures, which indicated that the design strategy and expression methods would be useful for obtaining substantial amounts of stable peptides at low costs. These results showed that DSAOP produced with recombinant Escherichia coli could be useful in cosmetic skin care products, health foods, and pharmaceuticals.

cDNA Cloning, Sequence Analysis and Molecular Modeling of a New Peptide from the Scorpion Buthotus saulcyi Venom

  • Nikkhah, Maryam;Naderi-Manesh, Hossein;Taghdir, Majid;Talebzadeh, Mehdi;Sadeghi-Zadeh, Majid;Schaller, Janatan;Sarbolouki, Mohamad N.
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.284-291
    • /
    • 2006
  • In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the $\beta$-strand1 to the $\alpha$-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of $\alpha$-, $\beta$-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a $\beta$-toxin that competes with the depressant insect toxins for binding to $Na^+$ channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded $\beta$-sheet and a stretch of $\alpha$-helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.