• Title/Summary/Keyword: spatial chi-square statistics

Search Result 2, Processing Time 0.016 seconds

A Spatial Statistical Approach to Residential Differentiation (I): Developing a Spatial Separation Measure (거주지 분화에 대한 공간통계학적 접근 (I): 공간 분리성 측도의 개발)

  • Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.616-631
    • /
    • 2007
  • Residential differentiation is an academic theme which has been given enormous attention in urban studies. This is due to the fact that residential segregation can be seen as one of the best indicators for socio-spatial dialectics occurring on urban space. Measuring how one population group is differentiated from the other group in terms of residential space has been a focal point in the residential segregation studies. The index of dissimilarity has been the most extensively used one. Despite its popularity, however, it has been accused of inability to capture the degree of spatial clustering that unevenly distributed population groups usually display. Further, the spatial indices of segregation which have been introduced to edify the problems of the index of dissimilarity also have some drawbacks: significance testing methods have never been provided; recent advances in spatial statistics have not been extensively exploited. Thus, the main purpose of the research is to devise a spatial separation measure which is expected to gauge not only how unevenly two population groups are distributed over urban space, but also how much the uneven distributions are spatially clustered (spatial dependence). The main results are as follows. First, a new measure is developed by integrating spatial association measures and spatial chi-square statistics. A significance testing method based on the generalized randomization test is also provided. Second, a case study of residential differentiation among groups by educational attainment in major Korean metropolitan cities clearly shows the applicability of the analytical framework presented in the paper.

Predicting Unknown Composition of a Mixture Using Independent Component Analysis

  • Lee, Hye-Seon;Park, Hae-Sang;Jun, Chi-Hyuck
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.127-134
    • /
    • 2005
  • A suitable representation for the conceptual simplicity of the data in statistics and signal processing is essential for a subsequent analysis such as prediction, pattern recognition, and spatial analysis. Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.

  • PDF