• Title/Summary/Keyword: spatial/temporal resolution

Search Result 425, Processing Time 0.025 seconds

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Dynamic-Thermodynamic Sea Ice Model: Application to Climate Study and Navigation

  • Makshtas, Alexander;Shoutilin, Serger V.;Marchenko, Alexey V.;Bekryaev, Roman V.
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.20-28
    • /
    • 2004
  • A dynamic-thermodynamic sea ice model with 50-km spatial and 24-hour temporal resolution is used to investigate the spatial and long-term temporal variability of the sea ice cover the Arctic Basin. The model satisfactorily reproduces the averaged main characteristics of the sea ice and the sea ice extent in the Arctic Basin and its decrease in early 1990th. At times model allows to suppose partial recovery of sea ice cover in the last years of twenty century. The employment of explicit form for description of ridging gives opportunity to assume that the observed thinning is the result of reduction the intensity of ridging processes and to estimate long-term variability of probability the ridge free navigation in the different parts of the Arctic Ocean including the North Sea Route area.

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF

Improvement of Frame Rate of Electro-Optical Sensor using Temporal Super Resolution based on Color Channel Extrapolation (채널별 색상정보 외삽법 기반 시간적 초해상도 기법을 활용한 전자광학 센서의 프레임률 향상 연구)

  • Noh, SangWoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.120-124
    • /
    • 2017
  • The temporal super resolution is a method for increasing the frame rate. Electro-optical sensors are used in various surveillance and reconnaissance weapons systems, and the spatial resolution and temporal resolution of the required electro-optical sensors vary according to the performance requirement of each weapon system. Because most image sensors capture images at 30~60 frames/second, it is necessary to increase the frame rate when the target moves and changes rapidly. This paper proposes a method to increase the frame rate using color channel extrapolation. Using a DMD, one frame of a general camera was adjusted to have different consecutive exposure times for each channel, and the captured image was converted to a single channel image with an increased frame rate. Using the optical flow method, a virtual channel image was generated for each channel, and a single channel image with an increased frame rate was converted to a color channel image. The performance of the proposed temporal super resolution method was confirmed by the simulation.

Temporal and Spatial Distributions of the Surface Solar Radiation by Spatial Resolutions on Korea Peninsula (한반도에서 해상도 변화에 따른 지표면 일사량의 시공간 분포)

  • Lee, Kyu-Tae;Zo, Il-Sung;Jee, Joon-Bum;Choi, Young-Jean
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • The surface solar radiations were calculated and analyzed with spatial resolutions (4 km and 1 km) using by GWNU (Gangneung-Wonju National University) solar radiation model. The GWNU solar radiation model is used various data such as aerosol optical thickness, ozone amount, total precipitable water and cloud factor are retrieved from Moderate Resolution Imaging Spectrometer (MODIS), Ozone Monitoring Instrument (OMI), MTSAT-1R satellite data and output of the Regional Data Assimilation Prediction System(RDAPS) model by Korea Meteorological Administration (KMA), respectively. The differences of spatial resolutions were analyzed with input data (especially, cloud factor from MTSAT-1R satellite). And the Maximum solar radiation by GWNU model were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud factor.

Study of a GIS Based Land Use/Cover Change Model in Laos

  • Wada, Y.;Rajan, K.S.;Shibasaki, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.266-268
    • /
    • 2003
  • This is based on the AGENT-LUC model framework. Luangprabang Province has the largest percentage of shifting cultivation area in Laos PDR. The model simulates the spatial and temporal patterns of the shifting cultivation in the study area, using a GIS database while the total area of shifting cultivation is controlled by supply and demand balance of food. The model simulation period is from 1990 to 1999, at a spatial resolution of 500m. The results are evaluated using statistical data and remote sensing images. Through the validation, it is concluded that the trends simulated agrees to that of statistical data and the spatial and temporal patterns are also replicated satisfactorily.

  • PDF

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

A Video Encoding Scheme using Adaptive Spatial Resolution Control for Mobile Video Applications (모바일 비디오 응용을 위한 적응적 공간 해상도 제어 인코딩 기법)

  • Lee, Hee-Jung;Lee, Yong-Hee;Lee, Jong-Hun;Shin, Heon-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.654-662
    • /
    • 2009
  • Video streams for mobile video streaming can be encoded to fit the available network bandwidth by controlling three factors: temporal resolution, spatial resolution, and picture quality. The controlling of picture quality by modifying the quantization parameter (QP) is most widely used. In this paper, we demonstrate that reducing the spatial resolution adaptively can be more efficient in terms of picture quality and energy consumption in low bit-rate environment, and present a model to find the optimal spatial resolution for the available bandwidth. Adaptive spatial resolution control scheme is especially effective when the bandwidth between the video server and the mobile device varies considerably with time, and when the mobile device is sensitive to energy consumption. Our scheme can improve the picture quality by approximately O.5dB and reduce energy consumption by more than 50% compared to the conventional video coding in low bit-rate environment.

High-resolution Numerical Wind Map for Korean (한반도 고해상도 수치바람지도 구축)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Lee, Soon-Hwan;Kim, Min-Jung;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.463-466
    • /
    • 2009
  • The numerical simulation optimized by Four Dimensional Data Assimilation (FDDA) with Quick Scatterometer (QuikSCAT) data is carried out to evaluate wind resource characteristics at various heights in the southeastern area of the Korean Peninsula, where wind farms are planned to be built on on- and off-shore as well as comparable diurnal wind variations are characterized at the surface. The temporal and spatial distributions of modeled wind speeds showed good agreement with the observations based on the temporal variation analysis. Model results indicate that the higher model is performed in resolution, the more precise results is at turbine hub height. Occasionally, wind speed variations for each numerical resolution has a different regional and seasonal variations. In the coast area, hub height wind speed of 9km-resolution is simillar to that of 3km-resolution. On the other hand, hub height wind speed of 3km-resolution is simillar to that of 1km-resolution in the Jiri mountainous area.

  • PDF

Fast Transcoding from H.264 to MPEG-4 (H.264에서 MPEG-4로 빠른 트랜스코딩)

  • 권혁균;이영렬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.91-99
    • /
    • 2004
  • This paper proposed two transcodiing methods, which maintain the same spatio-temporal resolution and reduce a spatial resolution, to convert a H.264 video bitstream into an MPEG-4 video bitstream. When the H.264 video bitstream is transformed into the MPEG-4 video bitstream, the conversions between H.264 block types and MPEG-4 block types are performed by minimizing distortion and the ${\times}4$ block-based motion vector mapping is performed. The proposed two transcoding methods run 4.14~5.1 times as fast as the cascaded transcoding methods in MPEG-4 encoder side, while the PSNR (peak-signal-to ratio) is slightly degrade with maximum 0.3dB.