• Title/Summary/Keyword: sparse measurements

Search Result 47, Processing Time 0.026 seconds

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF

Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene

  • Wen, Fangqing;Zhang, Gong;Ben, De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3559-3571
    • /
    • 2015
  • This paper addresses the problem of signal acquisition with a sparse representation in a given orthonormal basis using fewer noisy measurements. The authors formulate the problem statement for randomly measuring with strong signal noise. The impact of white Gaussian signals noise on the recovery performance is analyzed to provide a theoretical basis for the reasonable design of the measurement matrix. With the idea that the measurement matrix can be adapted for noise suppression in the adaptive CS system, an adapted selective compressive sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to the noise information fed back by the processing center. In terms of objective recovery quality, failure rate and mean-square error (MSE), a comparison is made with some nonadaptive methods and existing CS measurement approaches. Extensive numerical experiments show that the proposed scheme has better noise suppression performance and improves the support recovery of sparse signal. The proposed scheme should have a great potential and bright prospect of broadband signals such as biological signal measurement and radar signal detection.

Sparse Channel Estimation Based on Combined Measurements in OFDM Systems (OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • We investigate compressive sensing techniques to estimate sparse channel in Orthogonal Frequency Division Multiplexing(OFDM) systems. In the case of large channel delay spread, compressive sensing may not be applicable because it is affected by length of measurement vectors. In this paper, we increase length of measurement vector adding pilot information to OFDM data block. The increased measurement vector improves probability of finding path delay set and Mean Squared Error(MSE) performance. Simulation results show that signal recovery performance of a proposed scheme is better than conventional schemes.

SOLAR CYCLE VARIATION OF UPPER THERMOSPHERIC TEMPERATURE OVER KING SEJONG STATION, ANTARCTICA

  • Chung, Jong-Kyun;Won, Young-In;Kim, Yong-Ha;Lee, Bang-Yong;Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.241-248
    • /
    • 2000
  • A groung Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0nm) from the thermosphere (about 250km) at King Sejong station (KSS, geographic: $62.22^{\circ}$S, $301.25^{\circ}$E; geomagnetic: $50.65^{\circ}$S, $7.51^{\circ}$E), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400K in 1989 and 800K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  • PDF

Secret Key Generation Using Reciprocity in Ultra-wideband Outdoor Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.524-539
    • /
    • 2014
  • To investigate schemes of secret key generation from Ultra-wideband (UWB) channel, we study a statistical characterization of UWB outdoor channel for a campus playground scenario based on extensive measurements. Moreover, an efficient secret key generation mechanism exploiting multipath relative delay is developed, and verification of this algorithm is conducted in UWB Line-of-sight (LOS) outdoor channels. For the first time, we compare key-mismatch probability of UWB indoor and outdoor environments. Simulation results demonstrate that the number of multipath proportionally affects key generation rate and key-mismatch probability. In comparison to the conventional method using received signal strength (RSS) as a common random source, our mechanism achieves better performance in terms of common secret bit generation. Simultaneously, security analysis indicates that the proposed scheme can still guarantee security even in the sparse outdoor physical environment free of many reflectors.

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Biologically Inspired Sensing Strategy using Spatial Gradients

  • Lee, Sooyong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • To find food, homes, and mates, some animals have adapted special sensing capabilities. Rather than using a passive method, they discharge a signal and then extract the necessary information from the response. More importantly, they use the slope of the detected signal to find the destination of an object. In this paper, similar strategy is mathematically formulated. A perturbation and correlation-based gradient estimation method is developed and used as a sensing strategy. This method allows us to adaptively sense an object in a given environment effectively. The proposed strategy is based on the use of gradient values; rather than instantaneous measurements. Considering the gradient value, the sampling frequency is planned adaptively, i.e., sparse sampling is performed in slowly varying regions, while dense sampling is conducted in rapidly changing regions. Using a temperature sensor, the proposed strategy is verified and its effectiveness is demonstrated.

Non-Iterative Threshold based Recovery Algorithm (NITRA) for Compressively Sensed Images and Videos

  • Poovathy, J. Florence Gnana;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4160-4176
    • /
    • 2015
  • Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.

Improvement in the Channel Capacity in Visible Light Emitting Diodes using Compressive Sensing (압축센싱기법을 이용한 가시광 무선링크 전송용량 증가기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6296-6302
    • /
    • 2014
  • A new technique, which can increase the channel bandwidth in an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a light emitting diode (LED), is proposed. The technique uses adaptive sampling to convert an OFDM signal to a sparse waveform. In compressive sensing (CS), a sparse signal that is sampled below the Nyquist/Shannon limit can be reconstructed successively with sufficient measurements. The data rate of the proposed CS-based visible light communication (VLC)-OFDM link increases from 30.72 Mb/s to 51.2 Mb/s showing an error vector magnitude (EVM) of 31 % at the quadrature phase shift keying (QPSK) symbol.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.