• Title/Summary/Keyword: sparse kernel density estimation

Search Result 2, Processing Time 0.019 seconds

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class (더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.525-534
    • /
    • 2017
  • The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method