• Title/Summary/Keyword: span limit

Search Result 177, Processing Time 0.024 seconds

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

Flexural strengthening of continuous unbonded post-tensioned concrete beams with end-anchored CFRP laminates

  • Ghasemi, Saeed;Maghsoudi, Ali A.;Bengar, Habib A.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1083-1104
    • /
    • 2015
  • This paper provides the results of an experimental investigation into the flexural behavior of continuous two-span unbonded post-tensioned high strength concrete (HSC) beams, strengthened by end-anchored CFRP laminates of different configurations in the hogging region. Implementing two different configurations of end-anchorage systems consisting of steel plates and bolts and carefully monitoring the development of strains throughout the load history using sufficiently large number of strain gauges, the response of beams including the observed crack propagations, beam deflection, modes of failure, capacity enhancement at service and ultimate and the amount of moment redistribution are measured, presented and discussed. The study is appropriate in the sense that it covers the more commonly occurring two span beams instead of the simply supported beams investigated by others. The experiments reconfirmed the finding of others that proper installation of composite strengthening system is most important in the quality of the bond which is essential for the internal transfer of forces. It was also found that for the tested two span continuous beams, the capacity enhancement is more pronounced at the serviceability level than the ultimate. This is an important finding as the design of these beams is mostly governed by the serviceability limit state signifying the appropriateness of the suggested strengthening method. The paper provides quantitative data on the amount of this capacity enhancement.

Optimal Design of I-type Girder in 2 Span Continuous Steel Bridges by LRFD (LRFD에 의한 2경간 연속 강교량 주부재의 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.78-85
    • /
    • 1999
  • In this study, I-type girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. The main program is coded with C++ and connected with optimization modul ADS, which is coded with FORTRAN. The results of the program show that the stress constraints of noncomposite section during the initial construction stage become active in the positive moment area and the service limit state constaints become active in the negative moment area.

  • PDF

Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load (I형 거더교의 동력분산형 하중에 대한 동적해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

Advanced aerostatic stability analysis of suspension bridges

  • Xiao, Ru-Cheng;Cheng, Jin
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2004
  • Aerostatic instability of a suspension bridge may suddenly appears when the deformed shape of the structure produces an increase in the value of the three components of displacement-dependent wind loads distributed in the structure. This paper investigates the aerostatic stability of suspension bridges using an advanced nonlinear method based on the concept of limit point instability. Particular attention is devoted to aerostatic stability analysis of symmetrical suspension bridges. A long-span symmetrical suspension bridge (Hu Men Bridge) with a main span of 888 m is chosen for analysis. It is found that the initial configuration (symmetry or asymmetry) may affect the instability configuration of structure. A finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges (NASAB) is presented and discussed. The aerostatic failure mechanism of suspension bridges is also explained by tracing aerostatic instability path.

Numerical Analysis to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast (무도상 판형교의 동적거동특성 분석을 위한 해석적 연구)

  • 최진유;오지택;김현민;김영국
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1080-1085
    • /
    • 2002
  • A dynamic characteristics of existing steel plate girder railway bridges without ballast were investigated from the finite element analysis. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional bridge models and wheel loads were produced by averaging field measured wheel loads of running vehicles at various speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 9m, 12m and 18m span length were investigated and compared with the limit values specified in Korean railway bridge specification.

  • PDF

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

보행하중을 받는 구조물의 효율적인 진동해석

  • 김기철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.159-166
    • /
    • 2000
  • Structures with a long span have a higher possibility of experiencing excessive vibration induced by human activities such as walking, running, jumping and dancing. These excessive vibration give occupants annoyance. The general method for the vibration analysis of structures subjected to walking loads is to apply a series of nodal loads with assigned time delays at the nodes. But this method has a limit in representing the walking loads. In this study, the equivalent nodal loads are introduced for an effective analysis of floor vibration induced by walking loads. And, walking loads with difference walking rate are measured and applied to the analytical model for numerical analysis.

  • PDF

Shear Strength Prediction by Modified Plasticity Theory for High-Strength Concrete Deep Beams

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.494-497
    • /
    • 2004
  • This paper presents the analysis results predicted by the upper bound approach in the limit analysis of concrete incorporating the original plastic and crack sliding solutions for short high-strength concrete beams that varied the compressive strength of concrete, and the shear span-to-depth and vertical shear reinforcement ratios. The significance of the distance away from the support to define the location where the yield line starts and the properties of cracked concrete, particularly related to high-strength concrete, is identified.

  • PDF

Reliability Analysis of RC Rahmen Bridge Design (철근콘크리트 라멘교 설계의 신뢰도 분석)

  • Paik, In-Yeol;Kim, Kee-Jun;Hwang, Chul-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.239-241
    • /
    • 2005
  • Reliability analysis of the design of reinforced concrete rahmen bridge is performed. Statistical properties for loads and resistances are taken into account in the analysis and the reliability indices are calculated for strength limit state of the current bridge design specification. Results are presented and discussed for different span lengths and wall heights.

  • PDF