• Title/Summary/Keyword: spacecraft reaction wheels' fault

Search Result 3, Processing Time 0.015 seconds

Fault Detection of a Spacecraft's Reaction Wheels by Extended Unknown Input Observer (확장형 미지입력 관측기를 이용한 위성 반작용 휠의 고장 검출)

  • Jin, Jae-Hyun;Yong, Ki-Ryeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1138-1144
    • /
    • 2011
  • This article deals with the problem of fault detection of a spacecraft's actuators. The authors introduce an extended unknown input observer for nonlinear systems. This is an extended form of unknown input observers which are used for linear systems. Since faults are not available, those are considered as unknown inputs. Unknown input observers can estimate states without full information of inputs if some conditions are satisfied. The authors suggest a continuous-time extended UIO (eUIO) and prove the convergence of state estimation errors. Since the dynamic equation of a spacecraft is nonlinear, an extended UIO can be applied. Three eUIOs are designed to monitor three reaction wheels. The moving averages of each eUIO's residuals are selected for decision logic. The proposed method is verified by numerical simulations.

Fault Tolerant Attitude Control for a Spacecraft Using Reaction Wheels (반작용 휠을 사용하는 인공위성의 내고장 자세제어기법)

  • Jin, Jae-Hyun;Lee, Hun-Gu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.526-532
    • /
    • 2007
  • This paper considers a fault tolerant control problem for a spacecraft using reaction wheels. Faults are assumed to be inherent to only actuators(reaction wheels) and a control algorithm to accommodate actuators' faults is proposed. An attitude control loop includes an angular velocity control loop. The time delay control method is used to make a spacecraft follow the command angular velocity and to accommodate actuators' faults. A stability condition for the proposed algorithm is derived and the performance is demonstrated by computer simulations.

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.