• Title/Summary/Keyword: space-matter tensor

Search Result 5, Processing Time 0.02 seconds

Super Quasi-Einstein Manifolds with Applications to General Relativity

  • Mallick, Sahanous
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.361-375
    • /
    • 2018
  • The object of the present paper is to study super quasi-Einstein manifolds. Some geometric properties of super quasi-Einstein manifolds have been studied. We also discuss $S(QE)_4$ spacetime with space-matter tensor and some properties related to it. Finally, we construct an example of a super quasi-Einstein spacetime.

A Understanding of the Temporal Stem

  • Choi, Chan-Young;Han, Seong-Rok;Yee, Gi-Taek;Lee, Chae-Heuck
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.365-369
    • /
    • 2010
  • Objective : There has been inconsistency about definition of the temporal stem despite of several descriptions demonstrating its microanatomy using fiber dissection and/or diffusion tensor tractography. This study was designed to clarify three dimensional configurations of the temporal stem. Methods : The fronto-temporal regions of several formalin-fixed human cerebral hemispheres were dissected under an operating microscope using the fiber dissection technique. The consecutive coronal cuts of the dissected specimens were made to define the relationships of white matter tracts comprising the temporal stem and the subcortical gray matters (thalamus, caudate nucleus, amygdala) with inferior limiting (circular) sulcus of insula. Results : The inferior limiting sulcus of insula, limen insulae, medial sylvian groove, and caudate nucleus/amygdala were more appropriate anatomical structures than the roof/dorso-lateral wall of the temporal horn and lateral geniculate body which were used to describe previously for delineating the temporal stem. The particular space located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus could be documented. This space included the extreme capsule, uncinate fasciculus, inferior occipito-frontal fasciculus, anterior commissure, ansa peduncularis, and inferior thalamic peduncle including optic radiations, whereas the stria terminalis, cingulum, fimbria, and inferior longitudinal fiber of the temporal lobe were not passing through this space. Also, this continued posteriorly along the caudate nucleus and limiting sulcus of the insula. Conclusion : The temporal stem is white matter fibers passing through a particular space of the temporal lobe located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus. The three dimensional configurations of the temporal stem are expected to give the very useful anatomical and surgical insights in the temporal lobe.

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.

Viscoelastic Property of the Brain Assessed With Magnetic Resonance Elastography and Its Association With Glymphatic System in Neurologically Normal Individuals

  • Bio Joo;So Yeon Won;Ralph Sinkus;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.564-573
    • /
    • 2023
  • Objective: To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. Materials and Methods: This prospective study included 47 neurologically normal individuals aged 23-74 years (male-to-female ratio, 21:26). The MRE was acquired using a gravitational transducer based on a rotational eccentric mass as the driving system. The magnitude of the complex shear modulus |G*| and the phase angle 𝛗 were measured in the centrum semiovale area. To evaluate glymphatic function, the Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) method was utilized and the ALPS index was calculated. Univariable and multivariable (variables with P < 0.2 from the univariable analysis) linear regression analyses were performed for |G*| and 𝛗 and included sex, age, normalized white matter hyperintensity (WMH) volume, brain parenchymal volume, and ALPS index as covariates. Results: In the univariable analysis for |G*|, age (P = 0.005), brain parenchymal volume (P = 0.152), normalized WMH volume (P = 0.011), and ALPS index (P = 0.005) were identified as candidates with P < 0.2. In the multivariable analysis, only the ALPS index was independently associated with |G*|, showing a positive relationship (β = 0.300, P = 0.029). For 𝛗, normalized WMH volume (P = 0.128) and ALPS index (P = 0.015) were identified as candidates for multivariable analysis, and only the ALPS index was independently associated with 𝛗 (β = 0.057, P = 0.039). Conclusion: Brain MRE using a gravitational transducer is feasible in neurologically normal individuals over a wide age range. The significant correlation between the viscoelastic properties of the brain and glymphatic function suggests that a more organized or preserved microenvironment of the brain parenchyma is associated with a more unimpeded glymphatic fluid flow.

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.