• Title/Summary/Keyword: space weather

Search Result 535, Processing Time 0.023 seconds

Construction of Korean Space Weather Prediction Center: Magnetometer

  • Kim, Khan-Hyuk;Choi, Seong-Hwan;Cho, Kyung-Seok;Park, Young-Deuk;Choi, Kyu-Chul
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.3-32.3
    • /
    • 2008
  • Solar and Space Weather Research Group in Korea Astronomy & Space Science Institute (KASI) has been funded for "Construction of Korean Space Weather Prediction Center" from Korean government. It has started since 2007 February and is planed as a 5-year project. The goal of this project is to develop a space weather warning and prediction system by the next solar maximum. KASI installed a magnetometer at Mt. Bohyun, which is about 200 km south-east apart from KASI, in 2007 September. After finishing test observations of the magnetometer for the period from September 2007 to January 2008, KASI has operated the magnetometer to monitor geomagnetic field variations associated with space weather effect. Ground-based magnetometers are critical for understanding geomagnetic disturbances in the near-Earth space environment, which are caused by solar wind variations. In this talk, we introduce science topics to be done with the data from KASI magnetometer and also discuss how they are related to space weather phenomena.

  • PDF

Satellite-based In-situ Monitoring of Space Weather: KSEM Mission and Data Application

  • Oh, Daehyeon;Kim, Jiyoung;Lee, Hyesook;Jang, Kun-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2018
  • Many recent satellites have mission periods longer than 10 years; thus, satellite-based local space weather monitoring is becoming more important than ever. This article describes the instruments and data applications of the Korea Space wEather Monitor (KSEM), which is a space weather payload of the GeoKompsat-2A (GK-2A) geostationary satellite. The KSEM payload consists of energetic particle detectors, magnetometers, and a satellite charging monitor. KSEM will provide accurate measurements of the energetic particle flux and three-axis magnetic field, which are the most essential elements of space weather events, and use sensors and external data such as GOES and DSCOVR to provide five essential space weather products. The longitude of GK-2A is $128.2^{\circ}E$, while those of the GOES satellite series are $75^{\circ}W$ and $135^{\circ}W$. Multi-satellite measurements of a wide distribution of geostationary equatorial orbits by KSEM/GK-2A and other satellites will enable the development, improvement, and verification of new space weather forecasting models. KSEM employs a service-oriented magnetometer designed by ESA to reduce magnetic noise from the satellite in real time with a very short boom (1 m), which demonstrates that a satellite-based magnetometer can be made simpler and more convenient without losing any performance.

DEVELOPMENT OF DATA INTEGRATION SYSTEM FOR GROUND-BASED SPACE WEATHER OBSERVATIONAL FACILITIES (우주환경 지상관측기 자료통합시스템 개발)

  • Baek, Ji-Hye;Choi, Seonghwan;Lee, Jae-Jin;Kim, Yeon-Han;Bong, Su-Chan;Park, Young-Deuk;Kwak, Young-Sil;Cho, Kyung-Suk;Hwang, Junga;Jang, Bi-Ho;Yang, Tae-Yong;Hwang, Eunmi;Park, Sung-Hong;Park, Jongyeob
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • We have developed a data integration system for ground-based space weather facilities in Korea Astronomy and Space Science Institute (KASI). The data integration system is necessary to analyze and use ground-based space weather data efficiently, and consists of a server system and data monitoring systems. The server system consists of servers such as data acquisition server or web server, and storage. The data monitoring systems include data collecting and processing applications and data display monitors. With the data integration system we operate the Space Weather Monitoring Lab (SWML) where real-time space weather data are displayed and our ground-based observing facilities are monitored. We expect that this data integration system will be used for the highly efficient processing and analysis of the current and future space weather data at KASI.

Construction of Korean Space Weather Prediction Center: Introduction

  • Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Kim, Khan-Hyuk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Rok-Soon;Lee, Jae-Jin;Choi, Seong-Hwan;Baek, Ji-Hye;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.1-32.1
    • /
    • 2008
  • It is well known that solar and space weather activities can influence the performance and reliability of modern technological system and can endanger human life. Since 2007, the Korea Astronomy and Space Science Institute (KASI) has initiated a research project for the construction of Korean Space Weather Prediction Center (K-SWPC) to make preparations for the next solar cycle maximum (~2012). In this talk, we briefly introduce the current progress of KASI activities for K-SWPC; extension of ground observation system, construction of space weather database and network, development of prediction models, and space weather effects. In addition, future plans for KSWPC will be discussed.

  • PDF