• Title/Summary/Keyword: space science

Search Result 14,528, Processing Time 0.038 seconds

Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

  • Roh, Dong-Goo;Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Park, Sun-Youp;Park, Maru;Choi, Young-Jun;Bae, Young-Ho;Park, Young-Sik;Jang, Hyun-Jung;Cho, Sungki;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

The Vibration Test Result of MIRIS

  • Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nam, Uk-Won;Lee, Mi-Hyeon;Park, Sung-Joon;Ka, Nung-Hyun;Lee, Duk-Hang;Park, Jang-Hyun;Matsumoto, Toshio;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2009
  • PDF

OWL-Net: A global network of robotic telescopes

  • Kim, Myung-Jin;Yim, Hong-Suh;Roh, Dong-Goo;Choi, Jun;Park, Jang-Hyun;Kyeong, Jaemann;Park, Young-Sik;Jo, Jung Hyun;Han, Wonyong;Yu, Jiwoong;Moon, Hong-Kyu;Park, Yoon-Ho;Cho, Sungki;Choi, Yong-Jun;Choi, Eun-Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2021
  • OWL-Net (Optical Wide-field patroL Network) is the first space situational awareness facility of its kind in South Korea which consists of five identical 0.5 m wide-field telescopes with 4K by 4K CCDs. The five stations are located in Mongolia, Morocco, Israel, United States, and South Korea. They are being operated in fully autonomous mode with the minimum human intervention. The primary objective of OWL-Net is to track Korean domestic satellites. In addition, it can be possible to conduct time-series photometry of bright solar system objects. We will present the system overview of the OWL-Net telescopes and progress report.

  • PDF

DEVELOPMENT OF DATA INTEGRATION SYSTEM FOR GROUND-BASED SPACE WEATHER OBSERVATIONAL FACILITIES (우주환경 지상관측기 자료통합시스템 개발)

  • Baek, Ji-Hye;Choi, Seonghwan;Lee, Jae-Jin;Kim, Yeon-Han;Bong, Su-Chan;Park, Young-Deuk;Kwak, Young-Sil;Cho, Kyung-Suk;Hwang, Junga;Jang, Bi-Ho;Yang, Tae-Yong;Hwang, Eunmi;Park, Sung-Hong;Park, Jongyeob
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • We have developed a data integration system for ground-based space weather facilities in Korea Astronomy and Space Science Institute (KASI). The data integration system is necessary to analyze and use ground-based space weather data efficiently, and consists of a server system and data monitoring systems. The server system consists of servers such as data acquisition server or web server, and storage. The data monitoring systems include data collecting and processing applications and data display monitors. With the data integration system we operate the Space Weather Monitoring Lab (SWML) where real-time space weather data are displayed and our ground-based observing facilities are monitored. We expect that this data integration system will be used for the highly efficient processing and analysis of the current and future space weather data at KASI.

Science Goal of the Diagnostic Coronagraph on the International Space Station

  • Bong, Su-Chan;Kim, Yeon-Han;Cho, Kyung-Suk;Lee, Jae-Ok;Seough, Jungjoon;Park, Young-Deuk;Newmark, Jeffrey S.;Gopalswamy, Natchimuthuk;Viall, Nicholeen M.;Antiochos, Spiro;Arge, Charles N.;Yashiro, Seiji;Reginald, Nelson L.;Fineschi, Silvano;Strachan, Leonard
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.3-47.3
    • /
    • 2018
  • The Korea Astronomy and Space Science Institute (KASI) plans to develop a coronagraph in collaboration with the National Aeronautics and Space Administration (NASA), to be installed on the International Space Station (ISS). It uses multiple filters to obtain simultaneous measurements of electron density, temperature, and velocity within a single instrument. The primary science goal is to understand the physical conditions in the solar wind acceleration region, and the secondary goal is to enable and validate the next generation of space weather science models. The planned launch in 2022 provides great potential for synergy with other solar space missions such as Solar Orbiter and Parker Solar Probe.

  • PDF