• Title/Summary/Keyword: space of school

Search Result 6,732, Processing Time 0.047 seconds

EST analysis of regenerating newt retina

  • Hisatomi, Osamu;Hasegawa, Akiyuki;Goto, Tatsushi;Yamamoto, Shintaro;Sakami, Sanae;Kobayashi, Yuko;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.267-268
    • /
    • 2002
  • A vertebrate retina is an organ belonging to the central nerve system (CNS), and is usually difficult to regenerate except at an embryonic stage in life. However, certain species of urodele amphibians, such as newts and salamanders, possess the ability to regenerate a functional retina from retinal pigment epithelial (RPE) cells even as adults. After surgical removal of neural retinas from adult newt eyes, the remaining RPE cells lose their pigment granules, transdifferentiate into retinal progenitor cells, which further differentiate into various retinal neurons, and then finally reform a functional neural network. To understand the molecular mechanisms of CNS regeneration, we attempted to investigate the genes expressing in regenerating newt retina. mRNAs were isolated from regenerating retinas at 18-19 days after the surgical removal of the normal retina, and a cDNA library (regenerating retinal cDNA library) were constructed. Our EST analysis of 112 clones in the regenerating cDNA library revealed that about 70% clones are closely related to the genes previously identified. About 40% clones are housekeeping genes, and about 15% clones encode proteins related to the regulation of gene expression and to the proliferation of the cells. Sequences similar to neural retina- and RPE-specific genes were not detected at all. These results led us to suppose that the regenerating retinal cells are in a state considerably different from those of neither neural retina nor RPE cells.

  • PDF

Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

  • Houno, Yuuki;Hishikawa, Toshimitsu;Gotoh, Ken-ichi;Naitoh, Munetaka;Mitani, Akio;Noguchi, Toshihide;Ariji, Eiichiro;Kodera, Yoshie
    • Imaging Science in Dentistry
    • /
    • v.47 no.3
    • /
    • pp.199-207
    • /
    • 2017
  • Purpose: Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Materials and Methods: Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Results: Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Conclusion: Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary.

A Space Analysis for Comprehending the Characteristics of Eco-Friendly Exterior Space at Elementary Schools - Focusing on Foreign Cases -

  • Sung, Lee-Yong;Jeong, Hee-Woong
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.15-23
    • /
    • 2017
  • Purpose: The purpose of this study is to suggest a proper plan about the exterior space of elementary school in Korea through analyzing the various factors of the exterior spaces in foreign elementary school case. because the foreign cases have diversified eco-friendly certification standards on the elementary school unlike Korean cases. Method: First, we review the recent eco-friendly research trends of elementary schools and the external space characteristics of elementary schools that are currently being studied through related literary surveys, And we review the korean criteria factor for eco-friendly certification, we draw the types of exterior space thorough analysis framework, using the korean criteria factor. Second, the foreign cases of the elementary school were chosen, and then some planning data such as architecture scheme, design concepts and drawings will be collected. So the data were analysed and then the characteristics of physical setting and eco-friendly certification standards will be drawn. Third, We analyzed the characteristics and factor of physical and eco-friendly of exterior space through the drawn types. Result: The various physical settings are appeared physical environment. when we analyzed certification factors at korean eco-friendly standards, the suggestion and guide about the eco-friendly elements than the numerical goals were treated importantly in Korea.

Point Cloud Generation Method Based on Lidar and Stereo Camera for Creating Virtual Space (가상공간 생성을 위한 라이다와 스테레오 카메라 기반 포인트 클라우드 생성 방안)

  • Lim, Yo Han;Jeong, In Hyeok;Lee, San Sung;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1518-1525
    • /
    • 2021
  • Due to the growth of VR industry and rise of digital twin industry, the importance of implementing 3D data same as real space is increasing. However, the fact that it requires expertise personnel and huge amount of time is a problem. In this paper, we propose a system that generates point cloud data with same shape and color as a real space, just by scanning the space. The proposed system integrates 3D geometric information from lidar and color information from stereo camera into one point cloud. Since the number of 3D points generated by lidar is not enough to express a real space with good quality, some of the pixels of 2D image generated by camera are mapped to the correct 3D coordinate to increase the number of points. Additionally, to minimize the capacity, overlapping points are filtered out so that only one point exists in the same 3D coordinates. Finally, 6DoF pose information generated from lidar point cloud is replaced with the one generated from camera image to position the points to a more accurate place. Experimental results show that the proposed system easily and quickly generates point clouds very similar to the scanned space.

Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

  • Hu, Lifang;Su, Peihong;Li, Runzhi;Yan, Kun;Chen, Zhihao;Shang, Peng;Qian, Airong
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.583-588
    • /
    • 2015
  • Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

An Analytical Study on Space Configuration in After-School Care Class for Elementary School - Focused on Guidelines of Emementary School Care Classes - (초등돌봄교실 공간구성특징에 관한 분석연구 - 초등 돌봄교실 길라잡이를 중심으로 -)

  • Kim, Sora
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.28 no.6
    • /
    • pp.3-13
    • /
    • 2021
  • Introduced in 2004 as an 'After-School Academy' policy, the 'After-School Care Class' has become a universal program for elementary schools over time. While the concept of public education service has expanded and changed in various ways including educational welfare, the physical environment of the care classroom has undergone fixed changes within the uniform classroom structure of a standardized school space. The purpose of this study is to identify spatial characteristics of care classroom through chasing and analysing changes in the care class space configuration from 2004 to the present. The findings are as follows. The plan of the early care classroom wasn't much different from the existing common classroom, and it was only in 2007 that the kitchen and floor heating appeared for the first time.From the 2015 standard plan, prominent differentiation of the space between learning activities and resting area was shown, but the spatial characteristics are nothing more than a division that utilizes ready-made furniture. A distinctive feature of the 2018 Seoul care classes are diversity. In the case of the care exclusive classrooms, the division between the support space and the main activity space became more clear using furniture integrated open walls and various floor levels. In the case of a shift classrooms that is used together with common classrooms, it is characterized by flexibility that allows dramatically different classroom configurations for each time period by using a convertible furnishing space.

ZEMAX Simulations of ASTRO-F/FIS

  • Sohn Jungjoo;Lee Hyung Mok;Jeong Woong-Seob;Tsuzuku Yasushi;Murakami Hiroshi;Kawada Mitsunobu;Nakagawi Takao
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.56-56
    • /
    • 2001
  • PDF

Thermal Analysis of TRIO-CINEMA Mission

  • Yoo, Jae-Gun;Jin, Ho;Seon, Jong-Ho;Jeong, Yun-Hwang;Glaser, David;Lee, Dong-Hun;Lin, Robert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO)-CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA) is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from $-70^{\circ}C$ to $-40^{\circ}C $ and decrease the average temperature of the magnetometer from $+93^{\circ}C$ to $-4^{\circ}C$ using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

AKARI/IRC spectroscopic survey for interstellar ice study

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Il-Seok;Aikawa, Yuri;Jeong, Woong-Seob;Lee, Ho-Gyu;Noble, Jennifer A.;Dunham, Michael M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.41.3-41.3
    • /
    • 2019
  • Ices in interstellar environments are well traced mostly by their absorption features in the near- to mid-infrared spectrum. The infrared camera (IRC) aboard AKARI provides us the near-infrared spectroscopic data which cover $2.5-5.0{\mu}m$ with a spectral resolution of R ~ 120. Our AKARI spectroscopic survey of young stellar objects (YSOs), including low-luminosity protostars and background stars, revealed the absorption features of $H_2O$, $CO_2$, CO, and XCN ice components. We present near-infrared spectra of the observed targets and compare their ice abundances with those previously derived from various YSOs and the background stars behind dense molecular clouds and cores. In addition, we suggest possible science cases for SPHEREx, NASA's new near-infrared space observatory, based on the results from our AKARI IRC spectroscopic study.

  • PDF