• Title/Summary/Keyword: space observatory

Search Result 1,227, Processing Time 0.027 seconds

Examination of the Co-evolution of Galaxies and their Central SMBHs at High Redshifts with Gravitational Lensing by QSO Host Galaxies

  • Taak, Yoon Chan;Im, Myungshin;Kang, Juhyeong;Kim, Jae-Woo;Kim, Dohyeong;Kim, Yongjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2015
  • The $M_{BH}-{\sigma}$ relation for galaxies is a stand-out illustration of the co-evolution of galaxies and their central supermassive black holes (SMBHs); however, how this co-evolution occurs and whether this relation holds for SMBHs of the early universe is still a matter of debate. In order to study this at higher redshifts, quasi-stellar objects (QSOs) are the best targets, due to their large sample size and effective $M_{BH}$ estimation. Nevertheless, it is difficult to examine properties of their host galaxies, simply due to the sheer brightness of the QSO itself. Here, we discuss a distinctive method in studying these QSO host galaxies, via gravitational lensing (GL). GL offers a unique approach in determining the mass of the lens object, in this case the host galaxy. QSOs from the SDSS quasar catalog were searched in the Hubble Space Telescope archives, and GL features around them were visually inspected. One such candidate is SDSS J1114-00; to increase its robustness as a GL system candidate, it was observed with the Inamori-Magellan Areal Camera & Spectrograph (IMACS) on the Magellan Baade Telescope at Las Campanas Observatory, to check whether the GL features have identical colors, meaning they are likely to originate from the same source. After confirmation of such GL systems, a sufficiently large sample will enable us to examine the $M_{BH}-{\sigma}$ relation at various redshifts, and in turn, investigate the co-evolution of SMBHs and their host galaxies.

  • PDF

LIFECYCLE OF THE INTERSTELLAR DUST GRAINS IN OUR GALAXY VIEWED WITH AKARI/MIR ALL-SKY SURVEY

  • Ishihara, D.;Kaneda, H.;Mouri, A.;Kondo, T.;Suzuki, S.;Oyabu, S.;Onaka, T.;Ita, Y.;Matsuura, M.;Matsunaga, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.117-122
    • /
    • 2012
  • The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and $18{\mu}m$. These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.

PMS EVOLUTION MODEL GRIDS AND THE INITIAL MASS FUNCTION

  • PARK BYEONG-GON;SUNG HWANKYUNG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.197-208
    • /
    • 2002
  • Five contemporary pre-main sequence (PMS) evolution model grids are compared with the photo-metric data for a nearly complete sample of low-mass members in NGC 2264. From amongst the grids compared, the models of Baraffe et al. (1998) prove to be the most reliable in mass-age distribution. To overcome the limited mass range of the models of Baraffe et al. we derived a simple transformation relation between the mass of a PMS star from Swenson et al. (1994) and that from Baraffe et al., and applied it to the PMS stars in NGC 2264 and the Orion nebula cluster (ONC). The resulting initial mass function (IMF) of the ONC shows that the previous interpretation of the IMF is not a real feature, but an artifact caused by the evolution models adopted. The IMFs of both clusters are in a good agreement with the IMF of the field stars in the solar neighborhood. This result supports the idea proposed by Lada, Strom, & Myers (1993) that the field stars originate from the stars that are formed in clusters and spread out as a result of dynamical dissociation. Nevertheless, the IMFs of OB associations and young open clusters show diverse behavior. For the low-mass regime, the current observations suffer from difficulties in membership assignment and sample incompleteness. From this, we conclude that a more thorough study of young open clusters is necessary in order to make any definite conclusions on the existence of a universal IMF.

Water vapor in high-mass star-forming regions and PDRs: the Herschel/HIFI view

  • Choi, Yunhee;van der Tak, Floris F.S.;van Dishoeck, Ewine F.;Bergin, Edwin A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.42.2-43
    • /
    • 2015
  • Massive stars play a major role in the interstellar energy budget and the shaping of the galactic environment. The water molecule is thought to be a sensitive tracer of physical conditions and dynamics in star-forming regions because of its large abundance variations between hot and cold regions. Herschel/HIFI allows us to observe the multiple rotational transitions of H2O including the ground-state levels, and its isotopologues toward high-mass star-forming regions in different evolutionary stages. Photodissociation regions (PDRs) are also targeted to investigate the distribution of water and its chemistry. We present line profiles and maps of H2O using data from two guaranteed-time key programs "Water In Star-forming regions with Herschel" and "Herschel observations of EXtra-Ordinary Sources". We analyze the temperature and density structures using LTE and non-LTE methods. We also estimate turbulent and expansion velocities, and abundance of water in the inner and outer envelopes using the 1D radiative transfer code. Around high-mass protostars we find H2O abundances of ~10-8-10-9 for the outer envelope and ~10-4-10-5 for the inner envelope, and expansion and turbulent velocities range from 1.0 km s-1 to 2.0 km s-1. The abundances and kinematic parameters of the sources do not show clear trends with evolutionary indicators. The Herschel/HIFI mapping observations of H2O toward the Orion Bar PDR show that H2O emission peaks between the shielded dense gas and the radicals position, in agreement with the theoretical and the observational PDR structure. The derived H2O abundance is ~10-7 and peaks at the depth of AV ~8 mag from the ionization front. Together with the low ortho-to-para ratio of H2O (~1) presented by Choi et al. (2014), our results show that the chemistry of water in the Orion Bar is dominated by photodesorption and photodissociation.

  • PDF

AKARI INFRARED CAMERA OBSERVATIONS OF THE 3.3 ㎛ PAH FEATURE IN Swift/BAT AGNs

  • Castro, Angel;Miyaji, Takamitsu;Shirahata, Mai;Ichikawa, Kohei;Oyabu, Shinki;Clark, David;Imanishi, Masatoshi;Nakagawa, Takao;Ueda, Yoshihiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.197-199
    • /
    • 2017
  • Using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI we study the ${3.3{\mu}m}$ polycyclic aromatic hydrocarbon (PAH) feature and its connection to active galactic nucleus (AGN) properties for a sample of 54 hard X-ray selected bright AGN, including both Seyfert 1 and Seyfert 2 type objects. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of the sources have known neutral hydrogen column densities ($N_H$). The ${3.3{\mu}m}$ PAH luminosity ($L_{3.3{\mu}m}$) is used as a proxy for star-formation (SF) activity and hard X-ray luminosity ($L_{14-195keV}$) as an indicator of the AGN power. We explore for possible difference of SF activity between type 1 (un-absorbed) and type 2 (absorbed) AGN. We use several statistical analyses taking the upper-limits of the PAH lines into account utilizing survival analysis methods. The results of our log($L_{14-195keV}$) versus log($L_{3.3{\mu}m}$) regression shows a positive correlation and the slope for the type 1/unobscured AGN is steeper than that of type 2/obscured AGN at a $3{\sigma}$ level. Also our analysis shows that the circum-nuclear SF is more enhanced in type 2/absorbed AGN than type 1/un-absorbed AGN for low $L_{14-195keV}$ luminosity/low Eddington ratio AGN, while there is no significant dependence of SF activity on the AGN type in the high $L_{14-195keV}$ luminosities/Eddington ratios.

MULTI-FREQUENCY RADIO OBSERVATIONS OF MOLECULAR CLOUDS IN THE IMMEDIATE VICINITIES OF HB3 (초신성 잔해 HB3와 인접 분자운의 다파장 전파관측)

  • KIM KWANG-TAE;LEE CHANG-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.149-166
    • /
    • 1998
  • The structure and environments of the molecular clouds near the SNR $HB3(G132.7\pm1.3)$ are studied. The molecular complex which is located at the southern rim of HB3 was proposed by former investigators as the one interacting with HB3. This complex region of $2^{\circ}\times2^{\circ}\;at\;l=133^{\circ}$ has been observed at $^{12}CO,\;^{13}CO,\;J=1-0\;at\;a\;1'$, resolution with the 14-m radio telescope at Taeduk Radio Astronomy Observatory. We have reached to the following four conclusions. The possibility that these molecular complex and HB3 are interacting with each other cannot be supported with any of our data. The morphologies of the two show no similarities. Neither particular features for the interaction are found in the CO lines. The hypothetical 'Molecular wall' which was expected to exist on the northwestern rim of HB3 as a cause for the noncircular morphology of HB3 is turned out to be nonexistent in CO. The molecular complex which resembles a 'bar' at a low resolution is now resolved into a U-shaped shell. It seems that the U-shape is consist of two independent components. No peculiarities, such as unseen masses or bright stars capable of forming HlI regions, are found within the U-shape region. The total mass included in the complex is estimated to be $M_{total}\;=\;2.9\~8.4\times10^5\;M_\bigodot$, which is in good agreement with previous observations within errors. Considering about 12 clumps distinguishable within the complex, the total mass implies that masses of each of clumps are on the order of $10^4\;M_\bigodot$, which makes these good objects for further studies in relation to star-formation. Especially the clumps associated with W3 are worthy for more high resolution observations for better understanding of astrophysical phenomenon ongoing in them.

  • PDF

The Analysis of Terrain Height Variance Spectra over the Korean Mountain Region and Its Impact on Mesoscale Model Simulation (한반도 산악 지역의 지형분산 스펙트럼과 중규모 수치모의에서의 효과 분석)

  • An, Gwang-Deuk;Lee, Yong-Hui;Jang, Dong-Eon;Jo, Cheon-Ho
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.359-370
    • /
    • 2006
  • Terrain height variance spectra for the Korean mountain region are calculated in order to determine an adequate grid size required to resolve terrain forcing on mesoscale model simulation. One-dimensional spectral analysis is applied to specifically the central-eastern part of the Korean mountain region, where topographical-scale forcing has an important effect on mesoscale atmospheric flow. It is found that the terrain height variance spectra in this mountain region has a wavelength dependence with the power law exponents of 1.5 at the wavelength near 30 km, but this dependence is steeply changed to 2.5 at the wavelength less than 30 km. For the adequate horizontal grid size selection on mesoscale simulation two-dimensional terrain height spectral analysis is also performed. There is no directionality within 50% of spectral energy region, so one-dimensional spectral analysis can be reasonably applied to the Korea Peninsula. According to the spectral analysis of terrain height variance, the finer grid size which is higher than 6 km is required to resolve a 90% of terrain variance in this region. Numerical simulation using WRF (Weather Research and Forecasting Model) was performed to evaluate the effect of different terrain resolution in accordance with the result of spectral analysis. The simulated results were quantitatively compared to observations and there was a significant improvement in the wind prediction across the mountain region as the grid space decreased from 18 km to 2 km. The results will provide useful guidance of grid size selection on mesoscale topographical simulation over the Korean mountain region.

A Search for Low Surface Brightness Dwarf Satellite Galaxies in Low Density Environments Using IMSNG

  • Lim, Gu;Im, Myungshin;Kim, Jisu;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2018
  • Searching for low surface brightness (LSB) dwarf galaxies in low density environments (isolated and group) can help us resolve the discrepancy between observation and theory known as the 'missing satellite' problem. They are also important to study the evolution of low mass galaxies in these environments. Although the number of dwarfs in such environments is rapidly increasing in many recent studies, it is still not easy to characterize their general properties. Motivated by this, we present preliminary results of our search for LSB dwarf galaxies around 60 nearby galaxies (D<50Mpc) using deep optical images. Imaging data from Maidanak Astronomical Observatory (MAO) in Uzbekistan as a part of Intensive Monitoring Survey of Nearby Galaxies (IMSNG; Im in prep.) and other archival data are used to find previously unknown LSB dwarf galaxies. Extended LSB sources (central surface brightness ${\mu}_0$ > $23mag/arcsec^2$) are first selected in the ${\mu}_0$ - magnitude plane (Rines & Geller 2008). The dwarf galaxy candidates are chosen by visual inspection. We discuss whether these candidates are actual satellite galaxies, by measuring the projected number densities in group environments and in the field. Also, their structural and photometric properties are compared with those of previously discovered dwarf galaxies in the literature.

  • PDF

Development of Observational Environment Evaluation Model for Sunshine Duration at ASOSs Located in Urban Areas (도시지역 유인관측소 일조 관측환경 평가 모델 개발)

  • Kim, Do-Yong;Kim, Do-Hyoung;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • In this study, the numerical model was developed to evaluate the observational environment of sunshine duration and, for evaluating the accuracy and utility of the model, it was verified against the observational data measured at Dae-gu Automated Synoptic Observing System (ASOS) located in an urban area. Three-dimensional topography and building configuration as the surface input data of the model were constructed using a Geographic Information System (GIS) data. First, the accuracy of the computing planetary positions suggested by Paul Schlyter was verified against the data provided by Korea Astronomy and Space Science Institute (KASI) and the results showed that the numerical model predicted the Sun's position (the solar azimuth and altitude angles) quite precisely. Then, this model was applied to reproduce the sunshine duration at the Dae-gu ASOS. The observed and calculated sunshine durations were similar to each other. However, the observed and calculated sunrise (sunset) times were delayed (curtailed), compared to those provided by KASI that considered just the ASOS's position information such as latitude, longitude, and elevation height but did not consider the building and topography information. Further investigation showed that this was caused by not only the topographic characteristic (higher in the east and lower in the west) but also the buildings located in the southeast near the sunrise and the southwest near the sunset. It was found that higher building resolution increased the accuracy of the model. It was concluded that, for the accurate evaluation of the sunshine duration, detailed building and topography information around the observing sites was required and the numerical model developed in this study was successful to predict and/or the sunshine duration of the ASOS located in an urban area.

THE SWINGS EFFECTS OF THE A-X SYSTEM AND v''= 1-0 BAND OF CO

  • KIM SANG-JOON
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.223-243
    • /
    • 1996
  • We have constructed a line-by-line model of the A-X system of CO in order to analyze the CO bands appearing in the UV spectra of comets. The model includes electronic, rotational, vibrational transitions, excitations by solar UV radiation, and effects of neutral and electron collisions. The major bands of the A-X system occur in the $1200 - 1800{\AA}$ range where the temporal variation of solar irradiation is significant. The solar spectrum in this spectral range shows many emission lines, which cause a significant Swings effect. We derived fluorescence efficiencies of the bands as functions of heliocentric velocity and cometocentric distance using a high resolution spectrum of the sun. We compared our model with a spectrum of comet P/Halley obtained with the IUE, and estimated that the UV Swings effects are less than 20 fluorescence efficiencies for the most bands of the A-X system. We discuss the temporal variation of solar UV irradiation and its effects on the fluorescence efficiencies. The study of the A-X system also requites knowledge of vibrational and rotational fluorescent processes in the infrared and radio regions because the majority of CO molecules in the coma is in the ground rotational states. The solar infrared spectrum near 5 microns, where the fundamental band of CO occurs, contains strong absorption lines of the fundamental band and hot bands of CO and its isotopes. We derived fluorescence efficiencies of the infrared band as functions of heliocentric velocity and cometrocentric distance. The solar absorption lines near 5 microns cause a 20 reduction of the g-factor of the fundamental band at heliocentric velocities close to 0 km/sec. We discuss the effects of neutral and electron collisions on the fluorescence efficiencies of the infrared and UV bands.

  • PDF