• Title/Summary/Keyword: space missions

Search Result 333, Processing Time 0.025 seconds

Lessons and Countermeasures Learned from Both Domestic and Foreign CubeSat Missions (국내외 큐브위성 운용 사례로 살펴본 교훈과 대책 )

  • In-Hoi Koo;Myung-Kyu Lee;Seul-Hyun Park
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.355-372
    • /
    • 2023
  • As the need for low-cost, high-efficiency cubesats develops in the new space age, commercial paradigms are shifting in the private sector. This paper examines the challenges of launching and operating both domestic and foreign cubesats, and proposes practical solutions to ensure the robustness and reliability of the satellites from a practical perspective. In particular, the paper deals with checkpoints that are easy to miss, focusing on key events that can occur from the satellite deployment process through normal mode to mission mode in the operation scenario. Although the contents presented in this paper may not be technically applicable to all cubesat systems due to the different nature of each satellite bus system, they will be of some help during satellite assembly, integration and testing.

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

OPTIMAL DEELECTION OF EARTH-CROSSING OBJECT USING A THREE-DIMENSIONAL SINGLE IMPULSE (3차원에서의 순간적인 속도변화에 의한 ECO의 최적궤도변경)

  • Mihn, Byeong-Hee;Park, Sang-Young;Roh, Kyoung-Min;Choi, Kyu-Hong;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.249-262
    • /
    • 2005
  • Optimization problems are formulated to calculate optimal impulses for deflecting Earth-Crossing Objects using a Nonlinear Programming. This formulation allows us to analyze the velocity changes in normal direction to the celestial body's orbital plane, which is neglected in many previous studies. The constrained optimization in the three-dimensional space is based on a patched conic method including the Earth's gravitational effects, and yields impulsive ${\Delta}V$ to deflect the target's orbit. The optimal solution is dependent on relative positions and velocities between the Earth and the Earth-crossing objects, and can be represented by optimal magnitude and angle of ${\Delta}V $ as a functions of a impulse time. The perpendicular component of ${\Delta}V $ to the orbit plane can sometimes play un-negligible role as the impulse time approaches the impact time. The optimal ${\Delta}V $ is increased when the original orbit of Earth-crossing object is more similar to the Earth's orbit, and is also exponentially increased as the impulse time reaches to the impact time. The analyses performed in present paper can be used to the deflection missions in the future.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

Conceptual Design of Rover's Mobility System for Ground-Based Model (지상시험모델 로버 주행장치 개념 설계)

  • Kim, Youn-Kyu;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup;Jeon, Sang-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.677-692
    • /
    • 2009
  • In recent years, lots of studies on the planetary rover systems have been performed around space advanced agencies such as NASA, ESA, JAXA, etc. Among the various technologies for the planetary rover system, the mobility system, navigation algorithm, and scientific payload have been focused particularly. In this paper, the conceptual design for a ground-based model of planetary rover's mobility system to evaluate mobility and moving stability on ground is presented. The status of overseas research and development of the planetary rover systems is also addressed in terms of technical issues. And then, the requirements of the planetary rover's mobility system are derived by means of considering mobility and stability. The designed rover's mobility system has an active suspension with 6 legs that controls 6 joints on the each leg in order to achieve high stability and mobility. This kind of mobility system has already applied to the ATHELE of NASA for various purposes such as transportation and habitation for human lunar exploration activities in the near future (i.e., Constellation program). However, the proposed system has been designed by focusing on the small-sized unmanned explorations, which may be applied for the future Korea Lunar exploration missions. Therefore, we expect that this study will be an useful reference and experience in order to develop the planetary exploration rover system in Korea.

Creation and Elaboration of Problem Space Depending on Students' Attitudes toward the Task and Thinking Skills (학생의 과제에 대한 태도와 사고력에 따른 문제공간의 형성과 정교화)

  • Kim, Kyung-Jin
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.141-151
    • /
    • 2009
  • Inquiry has been emphasized in science classrooms, but the problems shown in the inquiry are somewhat different with ones that students usually meet and experience in everyday life. The purpose of this study is to investigate how attitudes toward the task and thinking skills affect students' problem solving process, especially, the way of creating a problem space and elaborating problem solving strategies when they have little schema. The difference in students' problem solving strategies of Lego Robotics class, one of the summer programs for $4^{th}-6^{th}$ grade gifted students, which is new to them, was investigated. The results are as follows: (1) The difference in attitudes toward the task, or selection and identification of the missions, and the perception of operators, affected creating a different problem space. (2) Different level of thinking skills, or analytical and flexible thinking, efficient elaborative skill, and application of schema affected a different level of elaboration of the problem space and resulted in asuccess rate of problem solving. (3) Different initial problem space resulted in different problem solving strategies. But without thinking skills, students could not elaborate problem solving strategies efficiently. Several instructional recommendations to promote scientific inquiry were suggested based on the results.

TURBULENCE PRODUCED BY TSUNAMIS IN GALAXY CLUSTERS

  • FUJITA YUTAKA;MATSUMOTO TOMOAKI;WADA KEIICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.571-574
    • /
    • 2004
  • Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T ${\~}$2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

Regional variations of optical properties on asteroid (25143) Itokawa taken with the Asteroid Multi-band Imaging Camera (AMICA) on-board the Hayabusa spacecraft

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2015
  • Hayabusa is the JAXA's space mission that succeeded in sample-return from S-type asteroid (25143) Itokawa. During the rendezvous phase, more than a thousand of images were taken with the Asteroid Multi-band Imaging Camera (AMICA). It is valuable to study the regional variation of the optical properties on the asteroid using these images to know the generality and uniqueness of the returned samples. In addition, AMICA images are important in that they provide unique data set at low phase angle (i.e Sun-Itokawa-AMICA's angle) that have not been explored in the previous asteroidal missions. At the previous conference (2015 KAS spring meeting), we introduced our preliminary data analysis of AMICA data without considering the shape model of Itokawa and mentioned. In this study, we present a new result obtained through further analysis, taking account of the shape model of the asteroid. We thus utilized "plate_renderer" tool to derive Hapke model parameters at different terrains. It is found that the opposition amplitude (parameter B0) is consistent with those of the other S-type asteroids while the opposition width (parameter h) is significantly narrower than those of the other S-type asteroids. At this conference, we plan to describe the regional variation of photometric properties on Itokawa.

  • PDF

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

A Study on the AoA Based Defense Decision Making

  • Lee, Kyoung Haeng;Kwon, Yong Soo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This work describes a study on the Analysis of Alternatives (AoA) based defense decision making. Future battle-space is transformed into a System of Systems (SoS) concept which is accomplished missions and their functions through network based battle management systems under forming their grids of various sensors and shooters in a single theater. The acquisition process is, therefore, changing over from single system requirements to capabilities based acquisition of SoS. AoA help to justify the need for starting, stopping, or continuing an acquisition program. AoA identify potentially viable solutions and provide comparative cost, effectiveness, and risk assessments of each solution to a baseline. The decision making must consider not only cost-effectiveness, risk, and military worth, but also domestic policy, foreign policy, technological maturity of the solution, the environment, the budget, treaties, and a host of additional factors. In this point of view, this paper analyzes AoA template which are critical elements of the defense decision making. From results of this analysis of AoA template for Korean acquisition environment are presented.