• Title/Summary/Keyword: space form

Search Result 3,392, Processing Time 0.036 seconds

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Two Crystal Structures of Dehydrated $Ag^{+}$- and $Ca^{2+}$-Exchanged Zeolite $A,\;Ag_{12-2x}Ca_x-A\;(x=2\;and\;3)$ Treated with Cesium Vapor (탈수한 $Ag^{+}$ 이온과 $Ca^{2+}$ 이온으로 치환한 제올라이트 $A,\;Ag_{12-2x}Ca_x-A\;(x=2\;and\;3)$를 Cs 증기로 처리한 결정구조)

  • Song, Seung Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.621-627
    • /
    • 1994
  • Two crystal structures of dehydrated, $Ag^{+}$ and $Ca^{2+}$-exchanged zeolite A treated at $250^{\circ}C$ with 0.15 torr of Cs vapor have been determined by single-crystal X-ray diffraction technique in the cubic space group $Pm{\bar\3m$ at $21(1)^{\circ}C$ (a = 12.344(2) $\AA$ and 12.304(2) $\AA$). Their structures were refined to the final error indices, R (weighted), of 0.091 with 180 reflections, and 0.093 with 179 reflections, respectively, for which I > $3\sigma(I).$ In each structure, Cs species are found at four different crystallographic sites: 3 $Cs^{+}$ ions per unit cell are located at 8-ring centers, ca. 6.81∼7.14 $Cs^{+}$ ions are found on opposite 6-rings on threefold axes in the large cavity, ca. 1.93∼2.03 $Cs^{+}$ ions are found on threefold axes in the sodalite unit, and 0.53∼0.66 $Cs^{+}$ ions lie on opposite 4-rings. Also, ca. 4.12∼4.27 Ag atoms are located near the center of the large cavity. In these structures, excess cesium atoms in a unit cell are associated with other $Cs^{+}$ ions on a single threefold axis to form the linear cationic cluster $(Cs_4)^{3+}$. By blocking 8-rings, the $Cs^{+}$ ions may have prevented silver atoms from migrating out of the structure. The Ag atoms are likely to have formed hexasilver clusters at the centers of the large cavities. Each hexasilver cluster is stabilized by coordination to 14 $Cs^{+}$ ions.

  • PDF

The Geometrical Isomerization on Acidification in Hexamolybdoheteropoly Oxometalate. The Crystal Structure of $(NH_{4})_{4.5}[H_{3.5}\alpha-PtMo_{6}O_{24}].\;1.5H_{2}O,\;(NH_{4})_{4}[H_{4}\beta-PtMo_{6}O_{24}].\;1.5H_{2}O,\;and\;K_{3.5}[H_{4.5}\alpha-PtMo_{6}O_{24}].\;3H_{2}O$

  • Lee, Uk;Yukiyoshi Sasaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • $(NH_4)_{4.5}[H_{3.5}{\alpha}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(A),\;(NH_4)_4[H_4{\beta}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(B),\;and\;K_{3.5}[H_{4.5}{\alpha}-PtMo_6O_{24}]{\cdot}3\;H_2O(C)$ have been synthesized and their molecular structures have been also determined by single-crystal X-ray diffraction technique. The space groups, unit cell parameters, and R factors are as follows: Compound A, monoclinic, $A_{2/a}$, a= 19.074 (3), b=21.490 (3), c=15.183 (2) ${\AA};\;{\beta}$=109.67 (1) ${\AA}$; z=8; R=0.075($IF_0I>4{\sigma}(IF_0I);$ Compound B, triclinic, P$bar{1}$, a=10.776 (2), b=15.174 (4), c=10.697 (3) ${\AA};\;{\alpha}$ =126.29 (2), ${\beta}$=111.55 (2), ${\gamma}$=93.18 (2) ${\AA}$; Z=2; R=0.046($IF_0I>3{\sigma}(IF_0I);$): Compound C, triclinic, Pl, a=12.426 (2), b=13.884 (2), c=10.089 (1) ${\AA}$; ${\alpha}$=102.59 (2), ${\beta}$=110.73 (1), ${\gamma}$=53.93 (1) ${\AA}$; Z=2; R=0.074 ($IF_0I>3{\sigma}(IF_0I)$. Compounds A and C contain the well-known Anderson structure (planar structure) heteropoly oxometalate having approximate $bar{3}_m(D_{3d})$ symmetry, while compound B contains the bent structure heteropoly oxometalate having appproximate $2_{mm}(C2_v)$ symmetry. The bent structure and the planar one are geometrical isomers. These compounds are rot only novel heteroply molybdates containing platinate(IV) but also the first example of geometrical isomerism in the hexamolybdoheteropoly oxometalates. That isomerization surprisingly occurred because of the change of only 0.5 non-acidic hydrogen atom attached to the polyanion such as $[H_{3.5}{\alpha} -PtMo_6O_{24}]^{4.5-}{\to}[H_4{\beta}-PtMo_6O_{24}]^{4-}{\to}[H_{4.5}{\alpha} -PtMo_6O_{24}]^{3.5-}$. It seems that the gradual protonation of the polyanion plays an important role in that isomerism. These heteropolyanions form dimers by strong hydrogen bonds between two heteropolyanions in the respective crystal system.

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Crystallographic Studies of Dehydrated $Ag^{+}\;and\;K^{+}$ Exchanged Zeolite A Reacted with Alkali Metal Vapor

  • Yang Kim;Mi Suk Jeong;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.603-610
    • /
    • 1993
  • The crystal structure of dehydrated $Ag_{5.6}K_{6.4}-A$, zeolite A ion-exchanged with $K^+\;and\;Ag^+$ as indicated and dehydrated at 360$^{\circ}$C, has been determined by single-crystal X-ray diffraction techniques. Also determined were the structures of the products of the reactions of this zeolite with 0.1 Torr of Cs vapor at 250$^{\circ}$C for 48 h and 72 h, and with 0.1 Torr of Rb vapor at 250$^{\circ}$C for 24 h. The structures were solved and refined in the cubic space group Pm3m at 21(l)$^{\circ}$C (a= 12.255(l) ${\AA}$ , 12.367(l) ${\AA}$, 12.350(l) ${\AA}$, and 12.263(l) ${\AA}$, respectively). Dehydrated $Ag_{5.6}K_{6.4}$-A was refined to the final error indices $R_1= 0.044\;and\;R_2=0.037$ with 202 reflections for which I>3${\sigma}$(I). The crystal structures of the reaction products were refined to $R_1=0.087\;and\;R_2= 0.089$ with 157 reflections, $R_1=0.080\;and\;R_2= 0.087$ with 161 reflections, and $R_1= 0.071\;and\;R_2=0.061$ with 88 reflections, respectively. In the structure of $Ag_{5.6}K_{6.4}-A,\;K^+$ ions block all 8-oxygen rings, and one reduced Ag atom is found per sodalite cavity. Also, ca. 4.6 $Ag^+ ions\;and\;3.4 K^+ ions$ are found at 6-ring sites in the large cavity. The crystal structures of the reaction products show that all $K^+$ and $Ag^+$ ions have been reduced, and that all K^+$ atoms have left the zeolite. Cs or Rb species are found at three different crystallographic sites: 3.0 $Cs^+\;or\;3.0Rb^+$ ions per unit cell occupy 8-ring centers, ca. 8.0 $Cs^+ ions\;or\;5.7 Rb^+$ ions, are found on threefold axes opposite 6-rings deep in the large cavity, and ca. 2.5 $Cs^+\;or\;2.3 Rb^+ ions are found on threefold axes in the sodalite unit. Also, 1 $Rb^+$ ion lies opposite a 4-ring. Silver atoms, corresponding to 75% or 40% occupancy of hexasilver clusters stabilized by coordination to $Cs^+\;or\;Rb^+$ ions, are found at the centers of the large cavities. In the crystal structures of dehydrated Ag_{5.6}K_{6.4}-A$ reacted with Cs vapor, excess Cs atoms are absorbed and these form (locally) cationic clusters such as $(Cs_4)3^+\;and\;(Cs_6)4^+$.

Aristotle's conception of kinesis (아리스토텔레스의 변화 개념)

  • Jeon, Jae-won
    • Journal of Korean Philosophical Society
    • /
    • v.129
    • /
    • pp.291-313
    • /
    • 2014
  • The aim of this paper is to clarify the Aristotle's conception of change(kinesis). Aristotle defines the change as a process which actualize a potentiality. From Aristotle's definition of the change, a number of consequences flow directly about how to conceptualize it. First, the change is fundamentally directional. Second, if we do not know what the change is directed toward, we do not understand what the change is. Third, everything that changes is caused to change by a distinct cause of change, a changer. Fourth, there is a single actualization of cause and subject of the change. All change, for Aristotle, is the change of an enduring subject. And all change occur in the infinite(to apeiron) which is time, space, matter. It would be absurd to equate the whole and the infinite, for that would be to say that the unlimited had a limit. The infinite does not contain, but in so far as it is infinite, is contained. And due at least in part to its potentiality, the infinite is unknowable. Because it lacks a form. The infinite traditionally derived its dignity from being thought of as a whole in which everything is contained. But Aristotle removes the infinite from its position of majesty. Aristotle's this idea was a revolution in philosophical perspective.

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.

Full mouth rehabilitation in patient with loss of vertical dimension and deep bite due to tooth wear (치아 마모로 인한 수직고경감소와 과개교합을 가진 환자의 완전 구강 회복 증례)

  • Chae, Hyun-Seok;Jeon, Bo-Seul;Lee, Jung-Jin;Ahn, Seung-Geun;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.405-415
    • /
    • 2019
  • Excessive tooth wear can cause irreversible damage to the occlusal surface and can alter the anterior occlusal relationship by destroying the structure of the anterior teeth needed for esthetics and proper anterior guidance. The anterior deep bite is not a morbid occlusion by itself, but it may cause problems such as soft tissue trauma, opposing tooth eruption, tooth wear, and occlusal trauma if there are no stable occlusal contacts between the lower incisal edge against its upper lingual surface. The most important goal of treatment is to form stable occlusal contact in centric relation. In this case report, patients with decrease in vertical dimension and anterior deep bite due to maxillary posterior tooth loss and excessive tooth wear were treated full mouth rehabilitation with increased vertical dimension to regain the space for restoration and improve anterior occlusal relationship and esthetics. The functional and aesthetic problems of the patient could be solved by the equal intensity contact of all the teeth in centic relation (CR), anterior guidance in harmony with the functional movement, and restoration of the wear surface beyond the enamel range.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

A Study on the Role of Christianity and the Educational Direction in the Fourth Industrial Revolution (4차 산업혁명시대의 기독교의 역할과 교육방향에 관한 연구)

  • Kim, Hee Young
    • Journal of Christian Education in Korea
    • /
    • v.67
    • /
    • pp.377-414
    • /
    • 2021
  • Since Schwab mentioned the Fourth Industrial Revolution at the World Economic Forum Annual Meeting 2016, discussions have been ongoing about it and the future society. The Fourth Industrial Revolution exceeds the development of technology and influences society, culture, and lifestyle. Moreover, in the face of the COVID-19 crisis, society continues to experience and realize the era of the Fourth Industrial Revolution. Although we hope that this era will surely improve human life, we are also concerned about human alienation and social and economic polarization that may emerge as a consequence. How, then, does Christianity contribute to the public space and set the direction for education in this day and age? This study focused on the role of Christianity and the direction of education during the Fourth Industrial Revolution. First, I examine problems in terms of the inner and outer aspects of individuals and communities that may occur during the Fourth Industrial Revolution through the perspectives of Mitchell, a psychologist, Bellah, a sociologist, McGrath, a theologian, and Bostrom, a philosopher. Through their theories, we can view the lives of individuals in the real, virtual, and transcendental worlds of this era. I find that Christianity can provide a transcendent norm in this world, give meaning to life, and change people and the world. Therefore, I suggest the creation and expression of symbols as a direction for education. For this form of education, I recommend five steps, namely, observing, entering, discovering, participating, and making symbols. In this manner, people can represent the kingdom of God in the real world.