• Title/Summary/Keyword: space experiment

Search Result 1,951, Processing Time 0.028 seconds

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation (해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용)

  • Kim, Hun Gwan;Lee, Kangsu;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.161-171
    • /
    • 2021
  • This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.

Zoning Permanent Basic Farmland Based on Artificial Immune System coupling with spatial constraints

  • Hua, Wang;Mengyu, Wang;Yuxin, Zhu;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1666-1689
    • /
    • 2021
  • The red line of Permanent Basic Farmland is the most important part in the "three-line" demarcation of China's national territorial development plan. The scientific and reasonable delineation of the red line is a major strategic measure being taken by China to improve its ability to safeguard the practical interests of farmers and guarantee national food security. The delineation of Permanent Basic Farmland zoning (DPBFZ) is essentially a multi-objective optimization problem. However, the traditional method of demarcation does not take into account the synergistic development goals of conservation of cultivated land utilization, ecological conservation, or urban expansion. Therefore, this research introduces the idea of artificial immune optimization and proposes a multi-objective model of DPBFZ red line delineation based on a clone selection algorithm. This research proposes an objective functional system consisting of these three sub-objectives: optimal quality of cropland, spatially concentrated distribution, and stability of cropland. It also takes into consideration constraints such as the red line of ecological protection, topography, and space for major development projects. The mathematical formal expressions for the objectives and constraints are given in the paper, and a multi-objective optimal decision model with multiple constraints for the DPBFZ problem is constructed based on the clone selection algorithm. An antibody coding scheme was designed according to the spatial pattern of DPBFZ zoning. In addition, the antibody-antigen affinity function, the clone mechanism, and mutation strategy were constructed and improved to solve the DPBFZ problem with a spatial optimization feature. Finally, Tongxu County in Henan province was selected as the study area, and a controlled experiment was set up according to different target preferences. The results show that the model proposed in this paper is operational in the work of delineating DPBFZ. It not only avoids the adverse effects of subjective factors in the delineation process but also provides multiple scenarios DPBFZ layouts for decision makers by adjusting the weighting of the objective function.

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment (에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구)

  • Lee, Tae Gyu;Choi, Kyeong Seo;Shin, Youn Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.217-224
    • /
    • 2022
  • Today, with the development of technology and industry, fire accidents in special buildings are increasing as special buildings increase. However, despite the rapid development of information and communication technology, human casualties are steadily occurring due to the underdeveloped and ineffective indoor fire alarm system. In this study, we confirmed that the existing indoor fire alarm system using acoustic alarm could not deliver a sufficiently large alarm to the in-room personnel. To improve this, we designed and implemented a fire alarm system using edge computing and beacons. The proposed improved fire alarm system consists of terminal sensor nodes, edge nodes, a user application, and a server. The terminal sensor nodes collect indoor environment data and send it to the edge node, and the edge node monitors whether a fire occurs through the transmitted sensor value. In addition, the edge node continuously generate beacon signals to collect information of smart devices with user applications installed within the signal range, store them in a server database, and send application push-type fire alarms to all in-room personnel based on the collected user information. As a result of conducting a signal valid range measurement experiment in a university building with dense lecture rooms, it was confirmed that device information was normally collected within the beacon signal range of the edge node and a fire alarm was quickly sent to specific users. Through this, it was confirmed that the "blind spot problem of the alarm" was solved by flexibly collecting information of visitors that changes time to time and sending the alarm to a smart device very adjacent to the people. In addition, through the analysis of the experimental results, a plan to effectively apply the proposed fire alarm system according to the characteristics of the indoor space was proposed.

A Comparison of Pre-Processing Techniques for Enhanced Identification of Paralichthys olivaceus Disease based on Deep Learning (딥러닝 기반 넙치 질병 식별 향상을 위한 전처리 기법 비교)

  • Kang, Ja Young;Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.71-80
    • /
    • 2022
  • In the past, fish diseases were bacterial in aqua farms, but in recent years, the frequency of fish diseases has increased as they have become viral and mixed. Viral diseases in an enclosed space called a aqua farm have a high spread rate, so it is very likely to lead to mass death. Fast identification of fish diseases is important to prevent group death. However, diagnosis of fish diseases requires a high level of expertise and it is difficult to visually check the condition of fish every time. In order to prevent the spread of the disease, an automatic identification system of diseases or fish is needed. In this paper, in order to improve the performance of the disease identification system of Paralichthys olivaceus based on deep learning, the existing pre-processing method is compared and tested. Target diseases were selected from three most frequent diseases such as Scutica, Vibrio, and Lymphocystis in Paralichthys olivaceus. The RGB, HLS, HSV, LAB, LUV, XYZ, and YCRCV were used as image pre-processing methods. As a result of the experiment, HLS was able to get the best results than using general RGB. It is expected that the fish disease identification system can be advanced by improving the recognition rate of diseases in a simple way.

Development of Series Connectable Wheeled Robot Module (직렬연결이 가능한 소형 바퀴 로봇 모듈의 개발)

  • Kim, Na-Bin;Kim, Ye-Ji;Kim, Ji-Min;Hwang, Yun Mi;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.941-948
    • /
    • 2022
  • Disaster response robots are deployed to disaster sites where human access is difficult and dangerous. The disaster response robots explore the disaster sites prevent a structural collapse and perform lifesaving to minimize damage. It is difficult to operate robots in the disaster sites due to rough terrains where various obstacles are scattered, communication failures and invisible environments. In this paper, we developed a series connectable wheeled robot module. The series connectable wheeled robot module was developed into two types: an active driven robot module and a passive driven robot module. A wheeled robot was built by connecting the two active type robot modules and one passive type robot module. Two robot modules were connected by one DoF rotating joint, allowing the wheeled robot to avoid obstructions in a vertical direction. The wheeled robot performed driving and obstacle avoidance using only pressure sensors, which allows the wheeled robot operate in the invisible environment. An obstacle avoidance experiment was conducted to evaluate the performance of the wheeled robot consisting of two active driven wheeled robot modules and one passive driven wheeled robot module. The wheeled robot successfully avoided step-shaped obstacles with a maximum height of 80 mm in a time of 24.5 seconds using only a pressure sensors, which confirms that the wheeled robot possible to perform the driving and the obstacle avoidance in invisible environment.

An Analysis of the Effect of Living Lab Project Experience Education for Urban Planning and Design Students (도시계획·설계 전공 대학생들에 대한 리빙랩 프로젝트 체험 교육의 효과 분석)

  • Kim, Yong-Jin;Kim, Seong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.378-385
    • /
    • 2021
  • The purpose of this study is to analyze the effects of a comparative process so that students majoring in urban planning and design can develop the ability to present non-physical alternatives along with the ability to present alternatives to a physical environment to solve urban problems. A total of 30 students majoring in urban planning and urban design were analyzed for their satisfaction with their majors, intention to find a job related to their majors, and academic achievement. This was done after conducting a comparative course of living-lab projects utilizing idle space in a region in connection with a major education course for about a year. For the analysis, the four-group design used by Solomon was used to find the differences between students who participated in the class and those who did not. The analysis showed that the students who participated in the comparative course of the living-lab project were highly satisfied with their major and their intention to find a job related to their major. The results of this study suggest that the process of cultivating the ability to work with local residents and merchants to present physical and non-physical alternatives to solve local problems by utilizing the means of living lab projects has a positive effect on the students' attachment to their majors and their self-esteem.

Simplification Method for Lightweighting of Underground Geospatial Objects in a Mobile Environment (모바일 환경에서 지하공간객체의 경량화를 위한 단순화 방법)

  • Jong-Hoon Kim;Yong-Tae Kim;Hoon-Joon Kouh
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.195-202
    • /
    • 2022
  • Underground Geospatial Information Map Management System(UGIMMS) integrates various underground facilities in the underground space into 3D mesh data, and supports to check the 3D image and location of the underground facilities in the mobile app. However, there is a problem that it takes a long time to run in the app because various underground facilities can exist in some areas executed by the app and can be seen layer by layer. In this paper, we propose a deep learning-based K-means vertex clustering algorithm as a method to reduce the execution time in the app by reducing the size of the data by reducing the number of vertices in the 3D mesh data within the range that does not cause a problem in visibility. First, our proposed method obtains refined vertex feature information through a deep learning encoder-decoder based model. And second, the method was simplified by grouping similar vertices through K-means vertex clustering using feature information. As a result of the experiment, when the vertices of various underground facilities were reduced by 30% with the proposed method, the 3D image model was slightly deformed, but there was no missing part, so there was no problem in checking it in the app.

A study on the development of surveillance system for multiple drones in school drone education sites (학내 드론 교육현장의 다중드론 감시시스템 개발에 관한 연구)

  • Jin-Taek Lim;Sung-goo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.697-702
    • /
    • 2023
  • Recently, with the introduction of drones, a core technology of the 4th industrial revolution, various convergence education using drones is being conducted in school education sites. In particular, drone theory and practice education is being conducted in connection with free semester classes and career exploration. The drone convergence education program has higher learner satisfaction than simple demonstration and practice education, and the learning effect is high due to direct practical experience. However, since practical education is being conducted for a large number of learners, it is impossible to restrict and control the flight of a large number of drones in a limited place. In this paper, we propose a monitoring system that allows the instructor to monitor multiple drones in real time and learners to recognize collisions between drones in advance when multiple drones are operated, focusing on education operated in schools. The communication module used in the experiment was equipped with GPS in Murata LoRa, and the server and client were configured to enable monitoring based on the location data received in real time. The performance of the proposed system was evaluated in an open space, and it was confirmed that the communication signal was good up to a distance of about 120m. In other words, it was confirmed that 25 educational drones can be controlled within a range of 240m and the instructor can monitor them.

Experiment on the Sterilization Performance of Airborne Bacteria in Indoor Spaces using the Variation of Ozone Concentration Generated According to the Discharge Time of a Plasma Module with a Dielectric Barrier Discharge Technology (유전체 장벽방전 플라즈마 방전시간에 따른 오존 발생 농도변화의 값을 통한 실내 공간 내 부유세균 살균성능에 대한 실험)

  • Su Yeon Lee;Chang Soo Kim;Gyu Ri Kim;Jong Eon Im
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.344-351
    • /
    • 2023
  • Purpose: This study aimed to evaluate the effectiveness of a dielectric barrier discharge (DBD) plasma module for sterilizing airborne bacteria in indoor spaces and measure the concentration of ozone generated during plasma discharge. Method: The DBD plasma module was installed in a 76m3 space, and air samples were collected under various discharge times to compare the reduction of airborne bacteria. Result: The results showed a significant decrease in airborne bacteria, ranging from 92.057% to 99.999%, with an average ozone concentration of 0.04 ppm, below the reference value. Conclusion: The study suggests that plasma discharge can be used as a means of preventing the spread of airborne bacteria and viruses, while ensuring safety for human exposure.