• Title/Summary/Keyword: space balance

Search Result 481, Processing Time 0.021 seconds

Reliability and Concurrent Validity of the Balance Evaluation using Space Balance 3D and Tinetti Mobility Test in Subacute Stroke Patients (아급성 뇌졸중 환자에서 Space Balance 3D와 Tinetti Mobility Test를 이용한 균형 능력 평가의 신뢰도 및 동시타당도 연구)

  • Choi, Ji-Min;Lee, Jong-Hoon;Ha, Hyun-Geun;Kim, Yang-Gu;Kim, Yun-Hee;Bae, Young-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.264-273
    • /
    • 2012
  • The purpose of this study was to determine the test-retest reliability and the concurrent validity between tinetti mobility test (TMT), berg balance scale (BBS) and space balance 3D which is one of the computerized measurement and visual feedback balance assessment system in subacute stroke patients. Twenty three ambulatory acute stroke subjects were measured the TMT, BBS and space balance 3D. The test-retest reliability(intra-class correlation coefficient: ICC) indicated that the static and dynamic balance in space balance 3D considered moderate reliability and TMT, BBS were good reliability. In case of concurrent validity, there were moderate validity (p<.01) between static balance test with space balance 3D and each TMT, BBS. But there were only poor validity (p<.05) between center to forward-left, center to backward-left phase in dynamic balance test with space balance 3D and each TMT, BBS. These findings suggest that in subacute stroke patients the test-retest reliability and concurrent validity using the space balance 3D and TMT were valuable in balance test but there was limitation to evaluate dynamic balance test.

Effect of Space Fabric Type Air Insole Pressure difference on Balance to Normal Adults (공간직물형 에어 인솔의 공기압 차이가 젊은 성인의 균형 능력에 미치는 영향)

  • Kim, Gi-Chul;Lee, Jeon-Hyeong;Kim, Sang-Su;Nam, Hue-Hyeong
    • PNF and Movement
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Purpose: This study examined the effects of space fabric type air insole pressure differences on young adults' dynamic balance ability. Method: The subjects of this study were 17 young female adults without musculoskeletal system disease. Balance ability was measured by dividing the subjects into three groups: an experimental group which did not wear an air insole (insole-off group), an experimental group which wore an air insole to which air pressure of $0.55kg/cm^2$ was applied (insole-0.55 group), and an experimental group which wore an air insole to which air pressure of $0.75kg/cm^2$ was applied (insole-0.75 group). For dynamic balance, the subjects stood on a balance pad, and perimeter length and medium speed were measured three times. The averaged values were recorded and statistically processed. Result: There were significant differences in average speed, and the insole-0.75 group's average speed decreased compared to the insole-off group and the insole-0.55 group. Although the total movement distance did not statistically differ, the insole-75 group's movement distance decreased compared to the insole-off group and the insole-0.55 group. Conclusion: Application of a space fabric type air insole, in particular insole-0.75, was helpful in improving balance ability. This is considered to occur because the space fabric structure was conducive to decreasing sway and producing balance.

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

Wind Tunnel Test of MRP Model using External Balance

  • Chung, Jindeog;Sung, Bongzoo;Cho, Taehwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • A comparative wind tunnel testing of an airplane model was performed at the Korea Aerospace Research Institute Low Speed Wind tunnel(KARI LSWT). The model used for the comparative test was a seaplane model from the Glenn L. Martin Wind(GLM) Tunnel of University of Maryland, U.S.A. The 6-component external balance used in force and moment measurement is pyramidal type, which is a precision device that has strain gauge-type load cell inside of balance and the virtual center of the balance coincides with the tunnel centerline. Image method is adopted to eliminate the tare and interference of the model support, and to correct the flow angularity to the model also. Test results from KARI LSWT were compared with the results from GLM tunnel.

  • PDF

Development of Energy Balance Analysis Program for LEO Satellite Design (저궤도 인공위성 설계를 위한 에너지 균형 분석 프로그램 개발)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.850-857
    • /
    • 2007
  • The design and analysis of satellite electrical power subsystem is an important driver for the mass, size, and capability of the satellite. In particular, satellite energy balance analysis is critical in determining the capabilities and limitations of the power subsystem and the success of satellite operations. This paper introduces a new energy balance analysis program for LEO satellite development and shows an example of test results using other LEO satellite design data. The test results show that the proposed energy balance program can be used the optimal sizing of satellite electrical power subsystem and the analytical prediction of the on-orbit energy balance during satellite mission operations.

2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method (부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석)

  • Im, Dong-Kyun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1153-1161
    • /
    • 2010
  • An efficient solution method for harmonic balance techniques with Fourier transform is presented for periodic unsteady flow problems. The present partially-implicit harmonic balance treats the flux terms implicitly and the harmonic source term is solved explicitly. The convergence of the partially Implicit method is much faster than the explicit Runge-Kutta harmonic balance method. The method does not need to compute the additional flux Jacobian matrix from the implicit harmonic source term. Compared with fully implicit harmonic balance method, this partial approach turns out to have good convergence property. Oscillating flows over NACA0012 airfoil are considered to verify the method and to compare with results of explicit R-K(Runge-Kutta) and dual time stepping methods.

Development of the Power Simulation Tool for Energy Balance Analysis of Nanosatellites

  • Kim, Eun-Jung;Sim, Eun-Sup;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.225-235
    • /
    • 2017
  • The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLAB(R) graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STK(R)-MATLAB(R) connectivity was used to send the generated power from STK(R) to MATLAB(R) automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.

A Rotating Balance Design and Performance Estimation for a Rotor Test Jig (로터 실험 장치용 Rotating Balance의 설계 및 성능 검증에 관한 연구)

  • Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.301-306
    • /
    • 2009
  • In this study a 3-component rotating balance, which is designed to measure the thrust (Fz) and two moment components (Mx, My) simultaneously for a rotor test jig, is designed and its performance is validated experimentally. The low voltage signal from the strain gages mounted on the balance is amplified with a rotating amplifier, which is then fed through a slip-ring unit into the data acquisition system. In order to validate the accuracy of the calibration matrix obtained from a static calibration test, an additional reaction type balance is used to measure the thrust from a model rotor simultaneously, and shows very good result. Finally, the expanded uncertainty value, which is obtained from ISO method is estimated to be $2.82\times10^{-1}$, and the balance turns out to be reliable.

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

  • Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Choi, Ik-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.419-425
    • /
    • 2015
  • In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton's laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS) with an accuracy of ${\pm}1g$. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.