• Title/Summary/Keyword: soybean oligosaccharides

Search Result 39, Processing Time 0.031 seconds

Effect of O1igosaccharides on Mannitol Accumulation during the Fermentation of Kimchis (김치발효 중 Mannitol 생성에 미치는 올리고당류의 영향)

  • 강선철;윤종원노택욱
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.181-185
    • /
    • 1996
  • A considerable amounts of mannitol were accumulated during the fermentation of Kimchis. When several oligosaccharide including fructo-, soybean-, and isomaltooligosaccharides were added during the preparation of Kimchi as beneficial ingredient respectively, fructooligosaccharides (at $25^{\circ}C$) and soybean-oligosaccharides (at $35^{\circ}C$) significantly increased the amounts of mannitol accumulation, while isomalto-oligosaccharides exerted no effect at all fermentation conditions examined. This result were caused by no appearance of microorganisms which have the capability of utilizing isomalto-oligosacsharides during fermentation period. Isomalto-oligosaccharides can be recommended as an effective ingredient of Kimchis because both oligosaccharides and mannitol that have favorable functionalities were simultaneously contained. However, so as to enhance the cooling taste of Kimchis by increasing the content of mannitol, fructo- and soybean-oligosaccharides are rather favorable.

  • PDF

Functional Characteristics of Soybean Oligosaccharide (콩 함유 올리고당의 기능적 특성)

  • 정명근;이재철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.58-64
    • /
    • 2003
  • To enjoy a healthy life, it is important to have a well-balanced diet. However, in today's society, there is an increase in the consumption of preprocessed foods and frequency of eating out. Also the western diet, which is becoming move popular worldwide, contains relatively high levels of protein and fat, and a low amount of fiber, Furthermore, the increased availability of favorite foods has created a condition were the individual diet is less variable. With these conditions, it is difficult to maintain a diet that is nutritionally balanced. With these unbalanced diets, which are difficult to change, there has been an increase in adult disease and health problems, such as colon and breast cancer, It is speculated that metabolites for carcinogens are produced from diet components and that intestinal bacteria contribute to the production of these metabolites. Therefore, it is necessary to evaluate the relationships between health, diet, and intestinal microflora. Soybean oligosaccharide is composed of water-soluble saccharides that have been extracted from soybean whey, a by-product from the production of soy protein. This is mainly a mixture of mono-, di-, tri-, and tetrasac-charides, with the principle components being the oligosaccharide raffinose and stachyose. When consumed by humans, the oligosaccharides cannot be digested in the human duodenal and small intestinal mucosa, and these are selectively utilized by beneficial bifidobacteria in intestines. The results of acute and subacute toxicity tests, soy-bean oligosaccharides were nonpoisonous. Soybean oligosaccharides promote the growth of indigenous bifido-bacteria in the colon which by their antagonistic effects, suppress the activity of putrefactive bacteria. Also, they reduce toxic metabolites, detrimental enzymes and plasma lipid, and increase in the frequency of bowel evacuation and fecal quantities. Consequently, soybean oligosaccharides as functional foods components have potential roles in the prevention and medical treatment of chronic adult diseases. The study of processing property and physiological function of soybean oligosacchavides and development of high oligosaccharide variety allow the creation of new and exciting foodstuffs that aye functional healthy.

Determination of Isoflavone, Total Saponin, Dietary Fiber, Soy Oligosaccharides and Lecithins from Commercial Soy Products Based on the One Serving Size - Some bioactive compounds from commercialized soy products - (대두 가공품 1회분량 내 이소플라본, 사포닌, 식이섬유, 대두 올리고당 및 레시틴의 함량 - 상업용 대두 가공품 1회 분량 당의 생리활성 물질 함량 분석 -)

  • Kim, Cheon-Hoe;Park, Jeom-Seon;Sohn, Heon-Soo;Chung, Chai-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.96-102
    • /
    • 2002
  • The levels of biologically active compounds, such as isoflavone, total saponin, dietary fiber, soy oligosaccharides, and lecithin from each serving size of commercial soy products, were quantitatively determined from the raw soybean, soymilk, tofu, isolated soy protein (ISP), soybean paste(toenjang), natto, and tempeh from local and foreign market. Soy flour, natto, and soymilk contained 489.1 mg, 308.3 mg, and 138.1 mg of isoflavone in each 100 g of dry matter, respectively. The ratios of aglycone to glucoside of soybean paste and tempeh showed relatively high level compared with other tested soy products. Commercial soymilk showed the highest ratio of soluble fiber to total dietary(59%). The higher levels of dietary fiber (20.1 g) and lecithin (1.13 g) were also found in tofu. The lecithin and saponin content of isolated soy protein(ISP) were highest (0.63 g and 0.65 g/ 100 g of dry matter) among the tested samples. In conclusion, soy flour showed the highest level of biologically active compounds, such as saponin, isoflavone, dietary fiber, and soy oligosaccharides. But when the evaluation was based on the serving size, soymilk containing 31.5 mg of isoflavone, 2.59 g of dietary fiber, 0.57 g of oligosaccharides, 0.10 g of lecithin, and 0.11 g of saponin showed similarity to those of the tested soybeans(20 g).

Germination Effect of Soybean on Its Contents of Isoflavones and Oligosaccharides

  • Kim, Woo-Jung;Lee, Hye-Yeon;Won, Moo-Ho;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.498-502
    • /
    • 2005
  • Three Korean soybean varieties - Shinpaldal-2, Seomoktae and Seoritae - were investigated for changes in their physical properties and the amount of functional components (i.e. isoflavones and oligosaccharides), during germination. Soybeans were germinated at $20^{\circ}C$ for 96 hr in complete darkness. The dry weights of cotyledone, hypocotyl, seed coat, and hilum of Seoritae were heavier than those of other varieties. The dry weights of the three bean varieties decreased steadily in spite of root growth. The largest amount of isoflavone content was observed from Shinpaldal-2 (1.824 mg/g), followed by Seoritae (1.216 mg/g) and Seomoktae (1.125 mg/g). Total isoflavone content increased by 13% during initial germination, and then decreased thereafter. Aglycone types such as daidzein and genistein dominated the increase in isoflavone contents. The increase in genistein content of Shinpaldal-2 was 17.5 fold compared with ungerminated soybean, while the amount of daidzein was 6.7 times as much as ungerminated Shinpaldal-2 over an 18-hr germination period. Oligosaccharide contents such as raffinose (Raf) and stachyose (Sta) rapidly decreased during germination, while the sucrose (Sue) content remained constant until 36-48 hr of germination. From these results, it was clearly shown that the germination process significantly changed the contents of functional nutrients in soybeans. Therefore, the optimization of germination process should be considered to improve the biological functionality of soybeans in food processing.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

Stability of Oligosaccharides during Fermentation of Kimchi (김치발효중 올리고당류의 안정성)

  • Yun, Jong-Won;Ro, Tae-Wook;Kang, Sun-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.203-206
    • /
    • 1996
  • Three major oligosaccharides, which are commercially available, including fructo-, soybean- and isomalto-oligosaccharides were added during the preparation of kimchi to find possibilities of improving storage stability and enriching bifidus-stimulating agents. At a refrigerated temperature, all oligosaccharides tested were very stable over three weeks; however, at higher temperatures (e.g., $25\;and\;37^{\circ}C$), oligosaccharides added were degraded by microorganisms during the fermentation period. Among the three oligosaccharides examined, isomalto-oligosaccharides showed the highest stability; i.e., around 70% of the initial amounts were maintained even at $37^{\circ}C$, suggesting that isomalto-oligosaccharides can he recommended as an effective ingreadient in kimchi preparation because they have various beneficial functionalities.

  • PDF

Effects of Selected Oligosaccharides on Fecal Microflora and Lipid Constitution in Rats (다양한 종류의 올리고당이 흰쥐의 분변내 균총과 지질 성상에 미치는 영향)

  • 최은혜
    • Journal of Nutrition and Health
    • /
    • v.32 no.3
    • /
    • pp.221-229
    • /
    • 1999
  • Certain indigestible oligosaccharides may benefit gastrointestinal tract via fermentation and proliferation of desirable bacterial species. The purose of this study was to elucidate the effect of selected oligosaccharides, such as fructooligosaccharides(FOS), soybean oliosaccharides(SOE), and highly concentrated branched oligosaccharides(HiBOS), on fecal micorflora proliferation, lipid concentration, lipid peroxide formation and antioxidant enzymes acitivies in plasma and liver of the rats. Thirty two male Sprague-Dawley rats were randomly assigned to one of four treatments ; 1) control diet(AIN-93G diet); 2) control diet +5% FOS ; 3) control diet + 5% SOE ; 4) control diet + 5% HiBOS. The duration of the study was 4 weeks. Fecal bifidobacteria concentration were significantly higher (p<0.05) in the HiBOS group compared with the control after 4 weeks of dietary treatment. FOS and SOE groups also had higher fecal bifidobacteria levels than control, but statistical significance was not found. The concentration of plasma total lipid was decreased by oligosaccharide consumption, especially in HiBOS group(p<0.05). The concentration of plasma total triglyceride was significantly lower in all of the oligosaccharide containing groups compared with the control(p<0.05). The plasma total cholesterol concentration tended to be lower in the oligosaccharide consuming groups than control. The concentrations of hepatic total lipid, triglyceride and total cholesterol were not affected by consumption of oligosaccharides. Thiobarbituric acid reactive substance(TBARS) concentrations and antioxidant enzyme activities in plasma and liver were not affected much by experimental diets. There results suggest that dietary oligosaccharides may be beneficial for increasing intestinal bifidobacteria and lowering plasma lipid levels.

  • PDF

In vitro fermentation profiles of different soybean oligosaccharides and their effects on skatole production and cecal microbiota of broilers

  • Zhu, Xin;Xu, Miao;Liu, Haiying;Yang, Guiqin
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1195-1204
    • /
    • 2022
  • Objective: The objective of this study was to investigate the in vitro fermentation profiles of different soybean oligosaccharides (SBOs) and their effects on skatole production and cecal microbiota of broilers. Methods: Five SBOs with varying main component contents were fermented using an in vitro batch incubation inoculated with broiler cecal microbiota. Gas production was recorded automatically, skatole, indole and short-chain fatty acids (SCFAs) were determined using high-performance liquid chromatography, and microbial changes were analyzed using 16S DNA gene sequencing. Results: The addition of SBOs increased (p<0.05) gas production, suggesting bacterial growth-stimulating activities. In addition, the concentrations of indole were significantly (p<0.05) decreased after SBO supplementation, and SBO III, with higher sucrose and stachyose contents, decreased (p<0.05) the skatole level. Our results also revealed that the fermentation of SBOs by cecal microbiota produced (p<0.05) SCFAs, which were dominated by propionic acid, butyrate acid and lactic acid compared to the control. In addition, SBO III increased (p<0.05) the abundance of Firmicutes and Subdoligranulum and decreased that of Bacteroides. Conclusion: These results suggest that SBOs with higher sucrose and stachyose contents are promising prebiotics in modulating gut microbiota and reducing odor emission in broilers.

Influence of Dietary Oligosaccharides on Growth Performance and Intestinal Microbial Populations of Piglets

  • Shi, Bao-ming;Shan, An-shan;Tong, Jian-ming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1747-1751
    • /
    • 2001
  • An experiment was conducted to determine the effects of dietary oligosaccharides on performance and intestinal microbial populations of piglets. Ten litters of piglets were assigned to five groups randomly, with two litters per group. The control group was fed with corn-soybean basal diet. Oligosaccharides was added to the basal diet at the level of 0.05%, 0.1%, 0.2% and 0.35% respectively to form four experimental diets. The experiment was conducted with two periods. The first period (suckling period) was from 7 to 28 days of age and the second period (weanling period) was from 28 to 56 days of age. Fresh fecal samples were collected at 21 days of age and assayed for Escherichia coli concentration, pH and moisture content. Three pigs per group were slaughtered at 42 days of age and cecum, colon, and rectum content samples were collected and assayed immediately for Escherichia coli and Bifidobacterium concentration, pH and moisture content. The results showed that dietary oligosacchrides decreased fecal Escherichia coli population and pH significantly (p 0.05), but did not affect performance and fecal moisture content during suckling period. 0.1% oligosaccharides for weanling pigs increased growth and improved feed conversion ratio together with a reduction of diarrhea (p 0.05), but 0.35% oligosaccharides did not affect growth performance. 0.1% and 0.2% oligosaccharides for weanling pigs had a suppression to Escherichia coli colonization in rectum and an enrichment to Bifidobacterium in colon (p 0.05). Oligosaccharides decreased significantly (p<0.05) rectum moisture content, but did not affect cecum, colon and rectum pH.

Production of ${\alpha}$- and ${\beta}$-Galactosidases from Bifidobacterium longum subsp. longum RD47

  • Han, Yoo Ri;Youn, So Youn;Ji, Geun Eog;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.675-682
    • /
    • 2014
  • Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of ${\alpha}$- and ${\beta}$-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of ${\alpha}$- and ${\beta}$-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at $37^{\circ}C$ at pH 6.0 for 30 h. The optimal production of ${\alpha}$- and ${\beta}$-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both ${\alpha}$- and ${\beta}$-galactosidases was 6.0. The optimum temperatures were $35^{\circ}C$ for ${\alpha}$-galactosidase and $37^{\circ}C$ for ${\beta}$-galactosidase. They showed temperature stability up to $37^{\circ}C$. At a 1 mM concentration of metal ions, $CuSO_4$ inhibited the activities of ${\alpha}$- and ${\beta}$-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of ${\alpha}$- and ${\beta}$-galactosidases, which may reduce the levels of flatulence factors.