• Title/Summary/Keyword: soy milk fermentation

Search Result 33, Processing Time 0.036 seconds

Effect of Nutritional Difference between Soy Milk and Mung Milk on Fermentation

  • Gyeongseon An;Yeonghun Cho;Jungmin Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.301-301
    • /
    • 2022
  • Dairy products are important diet source for human because of their balanced essential nutrients along with various vitamins and minerals. However, lactose in milk can result in diarrhea to some consumers with lactose intolerance. Soy milk has no lactose and is suitable as a substitute for diary milk in accordance with recent trend of replacing animal food with vegetable food. However, polysaccharides in soy milks are difficult for humans to digest, leading to flatulence. These polysaccharides can be decomposed into monosaccharides by lactic acid bacteria, and fermentation can improve food quality. Because mungbean has higher carbohydrate content than soybean, mung milk can be easily fermented than soy milk, resulting in vege yogurt with higher contents of lactic acid. In this study, fermentation characteristics of vege yogurt were analyzed with different ratio of soy milk and mung milk (0%, 25%, 50%, 75%, 100% and 0%+sucrose) and different fermentation time (0, 8, and 16 hours). In general, pH decreased as fermentation time increased. Overall, pH significantly decreased when the mung milk content in yogurt increased. All samples showed higher titratable acidity after fermentation and soy yogurt (mungbean 0%, 16 hours) with sucrose showed the highest value (6.825%). As fermentation time increase, viscosity increased. In 8 and 16 hours, mung milk yogurt (mungbean 100%) showed the lowest viscosity while soy milk yogurt (soybean 100%) with no sucrose showed the highest viscosity after 16 hours of fermentation. The contents of crude protein, crude fat and ash were measured for nutritional analysis. Soy milk (mungbean 0%, 0 hours) had the values of crude protein 2.9g, crude fat 1.8g, and ash 0.3g, and mung milk (mungbean 100%, 0 hours), showed the values of crude protein 1.7g, crude fat 0g, and ash 0.3g. To analyze the effect of the differences in the contents of nutrition between soy milk and mung milk on fermentation, the changes in sugar contents, and antioxidant capacity will be conducted depending on fermentation time. Our results will provide the information in researching plant beverages.

  • PDF

Effect of ruminal administration of soy sauce oil on rumen fermentation, milk production and blood parameters in dairy cows

  • Konno, Daiji;Takahashi, Masanobu;Osaka, Ikuo;Orihashi, Takenori;Sakai, Kiyotaka;Sera, Kenji;Obara, Yoshiaki;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1779-1786
    • /
    • 2020
  • Objective: To evaluate soy sauce oil (a by-product of making whole soybean soy sauce) as a new dietary lipid source, a large amount of soy sauce oil was administered into the rumen of dairy cows. Methods: Four Holstein dairy cows fitted with rumen cannulae were used in a 56-day experiment. Ruminal administration of soy sauce oil (1 kg/d) was carried out for 42 days from day 8 to day 49 to monitor nutritional, physiological and production responses. Results: Dry matter intake and milk yield were not affected by soy sauce oil administration, whereas 4% fat-corrected milk yield and the percentage of milk fat decreased. Although ruminal concentration of total volatile fatty acids (VFA) and the proportion of individual VFA were partially affected by administration of soy sauce oil, values were within normal ranges, showing no apparent inhibition in rumen fermentation. Administration of soy sauce oil decreased the proportions of milk fatty acids with a carbon chain length of less than 18, and increased the proportions of stearic, oleic, vaccenic and conjugated linoleic acids. Conjugated linoleic acid content in milk became 5.9 to 8.8 times higher with soy sauce oil administration. Blood serum concentrations of non-esterified fatty acid, 3-hydroxybutyric acid, total cholesterol, free cholesterol, esterified cholesterol, triglyceride and phospholipid increased with administration of soy sauce oil, suggesting a higher energy status of the experimental cows. Conclusion: The results suggest that soy sauce oil could be a useful supplement to potentially improve milk functionality without adverse effects on ruminal fermentation and animal health. More detailed analysis is necessary to optimize the supplementation level of this new lipid source in feeding trials.

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.

Effects of Milk Products on Acid Production by Lactic Acid Bacteria in Soy Milk and Quality of Soy Yogurt (두유(豆乳)에 첨가된 유제품이 젖산균의 산생성(酸生成)과 대두요구르트의 품질에 미치는 영향)

  • Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • Soy milk prepared from soy protein concentrate was added with each of four types of milk products. Acid production and growth of five species of lactic acid bacteria(LAB) in soy milk and sensory property of soy yogurt were investigated. Acid production by LAB increased in proportion to concentration of milk products added to soy milk. Among the four milk products tested, whey powder or skim milk powder stimulated acid production by LAB more than whole milk powder or modified milk powder. Stimulating effect by whey powder on acid production by LAB was greater than other milk products at low concentration. Acid production by LAB in soy milk added with glucose or milk products significantly increased during fermentation. Sensory property of soy yogurt added with whole milk powder or skim milk powder was better than that of reference (soy yogurt added with glucose) while sensory property of soy yogurt added with whey powder or modified milk powder was Inferior to that of reference.

  • PDF

Growth of Lactic Acid Bacteria in Soy Milk and Flavor of Soy Yogurt (두유(豆乳)에서 젖산균의 생육(生育)과 대두(大豆)요구르트의 향미(香味))

  • Mun, Sung-Ae;Kim, Young-Bae;Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 1986
  • Soy milk prepared from soy protein concentrate was fermented with Lactobacillus acidophilus, L. bulgaricus, L. casci, Streptococcus lactis or S. cremoris. Growth and acid production of each organism in soy milk and flavor of soy yogurt beverages were investigated. Volatile compounds in soy milk and soy yogurts were also determined. Among the five organisms tested, L. bulgaricus produced most amount of acid in soy milk while S. cremoris produced least amount of acid in soy mile. Sensory evaluation showed that the flavor of soy yogurt beverages was inferior to that of milk yogurt beverage and the flavor of soy yogurt beverage prepared by L. bulgaricus was better than that of other soy yogurt beverages. Soy milk fermented with L. bulgaricus was more acceptable than unfermented soy milk. Lactic fermentation reduced n-hexanal in soy milk while it produced diacetyl that was not detected in unfermented soy milk.

  • PDF

Flavor and Volatile Compounds of Soy Yogurt (대두요구르트의 향미(香味)와 휘발성분(揮發成分))

  • Lee, Jung-Sook;Kim, Young-Bae;Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.51-53
    • /
    • 1985
  • Soy milks prepared from full-fat soy flour, defatted soy flow, soy protein concentrate (SPC) and soy protein isolate (SPI) were fermented with Lactobacillus acidophilus. Effects of lactic fermentation on the flavor and volatile compounds of soy milks were investigated. Sensory evaluation showed that the flavor of soy yogurt beverages was inferior to that of milk yogurt beverage and the flavor of SPI-yogurt beverage was better than that of other soy yogurt beverages. SPI-milk fermented with L. acidophilus was more acceptable than unfermented SPI-milk. Lactic fermentation reduced n-hexanal in SPC-milk and SPI-milk while it increased diacetyl in both soy milks.

  • PDF

Characterization of the Functional Properties of Soy Milk Cake Fermented by Bacillus sp.

  • Oh, Soo-Myung;Kim, Chan-Shick;Lee, Sam-Pin
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.704-709
    • /
    • 2006
  • The mucilage production and tyrosine content in soy milk cake (SMC) fermented by Bacillus firmus NA-1, Bacillus subtilis GT-D, and B. subtilis KU-A was improved by fortification with 10% defatted soybean flour. The fibrinolytic activity and consistency of the SMC were drastically increased by solid-state fermentation for 1 day. However, the consistency of the fermented SMC gradually decreased during fermentation for 3 days. Furthermore, the tyrosine content of the freeze-dried powder of SMC fermented by three Bacillus sp. was 9 times higher than that of unfermented SMC. The soybean proteins, including the 7S and 11S subunits, were partially digested during alkaline fermentation, producing lower molecular-weight peptides. The fibrinolytic enzyme produced in SMC fermented by B. firmus NA-l and B. subtilis KU-A exhibited higher thermal stability than that of B. subtilis GT-D fermentation. The powder obtained from B. subtilis GT-D fermentation had an ${\alpha}$-amylase activity and lower consistency compared to those of B. firmus NA-1 and B. subtilis KU-A. In addition, this powder contained 6.3% moisture content, 27% crude protein content and 9 units of fibrinolytic activity and proteolytic activity.

Growth Characteristics of Lactic Acid Bacteria in Whey-Soy Milk Mixtures (유청(乳淸)과 두유(豆乳) 혼합액(混合液)에서의 유산균(乳酸菌) 생육특성(生育特性))

  • Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.285-290
    • /
    • 1984
  • Growth characteristics of six lactic acid bacteria in whey-soy milk mixtures were investigated to obtain basic informations for processing cheese-like product by coprecipitation of whey and soy proteins. Streptococcus cremoris and Lactobacillus acidophilus produced more aicd than other lactic acid bacteria both in whey-soy milk mixture and in soy milk. Lactic acid fermentation was accelerated in whey-soy milk mixture than in soy milk with all the lactic aicd bacteria, and specially with S. lactis and S. cremoris in great extent. The number of viable cell of 1:1 mixed culture of S. lactis and S. cremoris in whey soy milk mixture was about 10 times than in soymilk. It was mainly the effect of lactose in the whey that increased the acid production by lactic aicd bacteria in whey-soy milk mixture although the degree of acceleration depended on the ability of microorganism to use carbohydrates. The optimum amount of lactose added to soy milk to accelerate the acid production was 0.8g/100ml soy milk.

  • PDF

Changes of Chemical Composition during Lactic Acid Fermentation of Soy Milk (대두(大豆)요구르트 제조과정중(製造過程中)의 성분변화(成分變化))

  • Keum, Jong Hwa;Oh, Man Jin
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.34-44
    • /
    • 1984
  • This experiment was carried out to obtain the fundamental data for development of digestibility and quality enhanced product of soy yogurt. Soy yogurt was processed from raw materials of soybean, defatted soybean and sprouted soybean which inoculated with Lactobacillus acidophilus and Bifidobacterium bifidum as a starter. Changes of chemical compositions, viable cell count and saccharides during processing were investigated including acceptibility of manufactured products. The results were summarized as follows; 1. Defatted soy milk ferment ed with Lactobacillus acidophilus was showed the greatest initial acid productivity and sprouted soy milk was showed the greatest growth of Loctobacillus acidophilus. 2. Acid production was accelerated when 2% glucose was used in soy milk. 3. Addition of reconstituted skim milk in soy milk and defatted roy milk increased acid production but was not showed the effect in the sprouted soy milk. 4. Sprouting soybean, the contents of raffinose and stachyose were decreased but those of glucose was increased. 5. When soy milk was fermented with Lactobacillus acidophilus. the contents of raffinose and stachyose were decreased. 6. As a result of panel test, sprouted soy yogurt which was produced by addition of reconstituted skim milk of 10% showed the greatest flavor and tastes.

  • PDF

Effect of Soy Milk and Sugar Addition to Jeungpyun on Physicochemical Property of Jeungpyun Batters and Textural Property of Jeungpyun (증편 제조시 콩물과 설탕의 첨가가 반죽의 이화학적 성질 및 저장 중 증편의 품질에 미치는 영향)

  • Na, Han-Na;Yoon, Sun;Park, Hea-Won;Oh, Hea-Sook
    • Korean journal of food and cookery science
    • /
    • v.13 no.4
    • /
    • pp.484-491
    • /
    • 1997
  • The study was attempted to investigate physicochemical and biological changes that would occur during preparation of Jeungpyun (rice cake prepared with rice wine). Furthermore, the effect of soy milk and suga. addition to Jeungpyun batters on textural changes of Jeungpyun during storage was studied in relation to physicochemical properties of Jeungpyun batters. 1. As fermentation continued, PH of Jeungpyun batters droped from 6.01 to 4.36. The addition of soy milk and 10% sugar to Jeungpyun batters resulted in significantly lower PH during fermentation. The volume of the batters with soy milk were significantly larger than those without soy milk. Jeungpyun batters with soy milk showed dramatic increase in viscosity after 2 hours of fermentation and the viscosity of other groups increased after 3 and half hours of fermentation. The reducing sugar contents of Jeungpyun batters containing 20% sugar increased rapidly during first fermentation and then decreased. The reducing sugar contents of Jeungpyun batters containing 10% sugar increased gradually during first fermentation and then rapidly increased after addition of 10% sugar during 3rd fermentation. 2. Sensory evaluation results demonstrated that hardness of Jeungpyuns increased and tenderness, springiness, moistureness, overall acceptability decreased during storage of 4 days at 4$^{\circ}C$. QTS data showed that hardness, gumminess, chewiness of all the groups increased and adhesiveness decreased during storage. Both of sensory evaluation and QTS data demonstrated that addition of soy milk and separate addition of sugar at first and furing 3rd fermentation period induced slower changes in textural properties in Jeungpyuns during storage.

  • PDF